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4.8.4.5. Exemplo

A estimagdo da média de uma populacdo por meio de intervalos de confianca com
amostras pequenas segue um procedimento similar ao que ja vimos para a estimacgido com
amostras grandes (se¢do 4.8.2); a diferenca € que os calculos agora ndo serdo baseados no
modelo de distribui¢do normal, e sim no modelo de distribuicdo de Student.

4.8.4.1. Intervalo de confianga para a média

Vimos anteriormente um teorema afirmando que, se uma populacdo pode ser con-
siderada normal e tem desvio-padrdo o conhecido, a média X das amostras aleatorias sim-
ples dela retiradas serd uma variavel com distribuicdo normal, qualquer que seja o tamanho
da amostra (Teorema 1, se¢do 4.7.1.1). Este teorema estd reproduzido abaixo.

Teorema 1. Distribuicdo das médias X de amostras de popula¢do normal
Se amostras aleatorias simples de tamanho 7 (qualquer) sdo retiradas de uma populagdo

normal de média p e desvio-padrio G, a média amostral X sera uma variavel com
distribui¢do normal,

XN N(,U)?,G??)

c
cujos pardmetros sdo: Uy =H e Ox = e
n

A variavel padronizada Z ~ N(0, 1) sera dada por
X~ Hx _X-u

Z=—

=— 1
o, = o/n 1)

Podemos portanto fazer testes de hipoteses, ou calcular intervalos de confianca,
usando a distribuicdo normal. Vimos porém outro teorema afirmando que, se esta mesma
populagido tiver desvio-padrdo desconhecido, a média X das amostras aleatdrias simples
dela retiradas ndo serd uma variavel com distribuicdo normal, mas podera ser transformada
numa variavel ¢, que segue a distribuicdo de Student. Este teorema (Teorema 2, se¢do
4.7.1.1) esta reproduzido abaixo:

Teorema 2. Estatistica de teste 7, com distribuicio de Student
Se amostras aleatorias simples de tamanho 7 sdo retiradas de uma populagio de distribuigdo
normal de média g, a estatistica de teste ¢ definida como

X —
(== )
Scorr /\/;

onde X : média da amostra, € s..,, : desvio-padrio corrigido,
tera distribuigdo de Student, com g.l. =n— 1.
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Este teorema foi a base tedrica para os festes de médias e de diferencas de médias
(secdo 4.7.1), e serd também a base para a estimagdo das médias e diferencas de médias.
Para amostras grandes, a formula para o IC de uma média é:

o 5, S
IC;%: Xtz— (3)

Jn

Para um IC de 0,95 (que foi o que usamos em todos os exemplos), z = 1,96, e a formula se
torna (se¢do 4.8.2.3, eq. 7):

IC%% . X +1,96—=
n

Quando a amostra é pequena, porém, o desvio-padrio s deve ser substituido por sua
versdo corrigida Sco

(4)

e a variavel z tem que ser substituida por ¢. O valor de 7 depende do nimero de graus de
liberdade existentes (definido pelo tamanho n da amostra) e do nivel de confianga do inter-
valo (representado por /-« ; lembre-se de que « ¢ a probabilidade fora do intervalo deseja-
do, e corresponde a regido de rejei¢do num teste de hipotese). Se queremos fazer um IC
com l-a de confianga usando uma amostra pequena, o intervalo sera:

l-a _ vy S
IC,u =X il‘(l—oc,g.l.) —F (5

Jn
4.8.4.2. Os problemas das amostras pequenas

Nenhum dos dois teoremas acima menciona o famanho da amostra, que parece nao
ser relevante. Por que ent@o temos que usar o Teorema 2 quando a amostra for pequena,
mas ndo quando ela for grande? (Note que fizemos THs e ICs para amostras grandes nas
secdes 4.4, 4.5, e 4.6 sem nos preocuparmos com isto, usando sempre a distribui¢ao nor-
mal).

A razdo € que, quando as amostras sdo grandes, tudo fica mais facil. Primeiro, a
exigéncia de que a populacgdo seja normal (comum aos dois teoremas acima) pode ser
relaxada; se a amostra for suficientemente grande, a distribuicdo amostral de X tenderd
para normal, mesmo que a populacdo ndo seja normal (este € o Teorema do Limite Central,
visto na se¢do 4.5.3.1, Teorema 2). Segundo, se o desvio-padrdo o da populacdo foi desco-
nhecido, podera ser estimado simplesmente pelo desvio-padrio s da amostra, e ainda assim
a distribui¢do amostral de X continuara sendo normal.

Quando as amostras sdo pequenas, porém, tudo se complica, pois estas amostras
trazem menos informacao do que as amostras grandes. Se a populac@o nio for normal, a
distribuig@o amostral de X ndo ira se aproximar suficientemente da normal. Se a popula-
¢do for normal, mas o desvio-padrdo o da populagdo for desconhecido, teremos que esti-
mar este o a partir do desvio-padrio s.,- da amostra; serdo feitas portanto duas estimati-
vas (de 6 e de X ) ao invés de uma s6, o que aumenta a incerteza do resultado. Isto faz com
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que os testes com amostras pequenas tenham sempre menor poder do que os feitos com
amostras grandes (veja “poder” nas secdes 4.3.3 € 4.7.1.1, p.3); além disso, que os ICs cal-
culados a partir destas amostras tenham maior amplitude do que os calculados a partir da
distribui¢cdo normal, e sejam portanto menos precisos.

Por exemplo, suponha que queiramos estimar a média x de uma populag@o normal,
e para isto retiramos dela uma amostra de n = 10 e encontramos X = 2,00 . Se sabemos que
o desvio-padrdo desta populagdo ¢ o= 0,5, o IC de 95% de confianga pode ser calculado
por meio da distribuicdo normal, e resulta em:

IClys = X 1,96

Jn

0,5

J10

Se contudo G ¢ desconhecido, teremos que estima-lo a partir do desvio-padrio da
amostra. Suponha que na amostra encontramos S, = 0,5. O IC calculado a partir da dis-
tribui¢do 7 serd dado por:

]Céf% =2,00+1,96 =2,00+£0,30 ©

= S
ICl,s =X £t —corr
0,95 (1-a=0,95;g.1.) \/—
n
Na tabela da distribuicdo de Student, vemos que o valor criticode 7 (parag./. =n—1=9e
probabilidade 1-a = 0,95) é:
£0,95; g.1=9) = 2,262

ICYs5 =2,00£2,262 >0

J1o

Note que, embora em ambos intervalos o valor numérico do desvio-padrdo usado
tenha sido o mesmo (igual a 0,5), o IC na eq. (6) tem amplitude menor do que o na eq. (7),
e € portanto mais preciso. Isto € facil de entender, intuitivamente: a estimativa na eq. (6)
foi calculada a partir do valor verdadeiro de ; a estimativa na eq. (7) foi calculada a partir
de uma estimativa de G, obtida a partir de uma amostra pequena; esta estimativa ¢ apenas
uma aproximacao do valor real, e que com certeza contera um erro que ndo podemos deter-
minar.

4.8.4.3. Demonstragdo do intervalo de confianga

E facil ver que a expressdo do IC para amostras pequenas na eq. (5) tem a mesma
estrutura do IC para amostras grandes na eq. (3), sendo feita apenas a substituicdo do des-
vio-padrdo amostral s por sua versdo corrigida s..,,, € da variavel z pela variavel ¢. Estas
duas substituicdes fazem sentido, se considerarmos o que foi dito na sec¢do anterior, e pro-
vavelmente a maioria dos estudantes ndo ird se preocupar com uma demonstragdo da ori-
gem da expressdo em (5).

Esta demonstragdo contudo ndo ¢ dificil. Primeiro, vimos na eq. (2) que a variavel ¢
¢ definida como:

w
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Seom [\

Representaremos os valores de 7 que delimitam o intervalo de confianga por #. ( critico);
alguns livros preferem usar a notagao f;.q 1), mas usaremos aqui uma forma mais simples.
A probabilidade do intervalo limitado pelos valores . e +#. sera a confianga do intervalo,
e a representaremos por 1—«:

Pl-t, <t<t,]=1-«

Substituindo 7 por sua defini¢do, e reorganizando os termos da equagdo, obtemos:
X—u

PR

S, = S
P| —p Zcom <X_,U<tc corr:|:1_a

P - =1-

“n n

i = 8
P COII <_ﬂ<_X+tc corr :l_a
“n ﬁ}
Pl X 41, Sear >u>X—t, =l-«a
I «/Z}

Pl X1, 2 < jy< X1, ””}zl—a (8)

n n

A expressdo em (8) da o IC para a média populacional : um intervalo que tem uma
probabilidade 1—« de conter o valor de & Uma observagao interessante ¢ a de que, na
maioria das expressdes deste tipo que ja usamos, a variavel encontra-se no centro destas
desigualdades; por exemplo, quando escrevemos, num problema simples de probabilida-
des:

P(3 <X <5)

Em (8), porém, quem est4 no centro ¢ 4, uma constante; o que ¢ variavel sdo os limites do

intervalo,

y +1 Scorr

“n

pois cada amostra que tirarmos tera uma média X e um desvio-padrao s, diferente.

4.8.4.4. Verificagdo dos pressupostos

Os ICs para médias feitos a partir de amostras pequenas, como vimos, sdo bastante
semelhantes aos ICs feitos a partir de amostras grandes (se¢@o 4.8.2). E importante porém
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lembrar que, quando trabalhamos com amostras pequenas, tanto em testes quanto em ICs,
ha sempre varios pressupostos que devem ser levados em conta; antes de fazer o IC, ¢ pre-
ciso verificar se estes pressupostos foram atendidos.

Estes pressupostos ja foram discutidos quando estudamos os testes com amostras
pequenas (se¢do 4.7.1). Em resumo, sdo dois os mais importantes. O primeiro ¢ o de que a
amostra usada seja uma amostra aleatoria simples. Se a amostragem foi feita por outra téc-
nica (amostragem estratificada, amostragem por conglomerados, etc.), as formulas para
calculo da variancia serdo diferentes. Este pressuposto ndo pode ser verificado a partir da
amostra. Ndo € possivel descobrir, simplesmente analisando os dados, que tipo de amostra-
gem foi usada; € preciso verificar como foi feito o planejamento do estudo, como os dados
foram obtidos, etc.

O segundo pressuposto ¢ o de que a distribui¢do da populagdo seja normal. Isto
pode ser verificado a partir da amostra, por meio de técnicas que comparam graficamente a
distribuicdo observada nos dados com a distribui¢do normal teorica (grdficos de separatri-
zes), ou por meio de testes de normalidade, testes de hipotese que verificam se € provavel
que uma amostra tenha saido de uma populac@o normal. Os testes mais usados sdo os de
Kolmogorov-Smirnov e de Shapiro, ambos implementados em R no pacote stats (secdo
4.7.1.2 (1)).

4.8.4.5. Exemplo

Um grupo de pesquisadoras coletou num lago uma amostra de 15 girinos de uma

espécie de sapo. Os dados abaixo mostram os pesos destes girinos, em gramas:
23 L8 20,0 241 202 268 2ad 2,0 2.1 244 2.1 248 2.1 248 2.9

As estatisticas amostrais calculadas sdo:
média: X=2207¢g
desvio-padrao: Seorr = 0,240 g

Queremos estimar o peso médio destes girinos por meio de um IC de 0,95 de
confianca. Como a amostra € pequena, faremos um teste baseado na distribuicdo de
Student. Para isto, precisamos primeiramente verificar se a populacdo de onde saiu esta
amostra ¢ normal; o teste de Shapiro feito no R d4 como resultado:

> shapiro.test (x)
Shapiro-Wilk normality test
data: x

W = 0.9281, p-value = 0.2552

Como o valor-p obtido foi bem maior do que 0,05, concluimos que a hipotese nula (de que
a populacdo ¢ normal) ndo pode ser rejeitada, e podemos prosseguir com os célculos.
Para um IC de 0,95, precisamos do valor de ¢ definido para:
1-a= 0,95
gl=n-1=15-1=14
Na tabela de Student, encontramos ¢ = 2,14. Fazendo os calculos,

095 _ v Scorr
IC,)™ = X 21095 g 1-14y— 7

Jn

D
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0,240
Jis

IC” =2,207+2,14% =2,207+0,133

O intervalo de confianga desejado é portanto:
IC)”: (2,07a2,34) g

Resumo

1. Estimativas de médias populacionais por meio de intervalos de confianga podem ser feitas a partir de
amostras pequenas; sera usada entdo a distribuicdo de Student, em vez da distribui¢do normal.

2. Para calcular o IC precisamos de uma estimativa do desvio-padrio da populagdo; esta estimativa sera
dada pelo desvio-padrado corrigido calculado na amostra.

3. Todo IC (e todo TH) feito a partir de amostras pequenas é baseado em alguns pressupostos; é preciso
verificar se eles foram atendidos, antes de fazer os calculos.

4. O IC para uma média populacional, além de pressupor que a distribui¢do na populacio seja normal,
exige também que a amostra usada seja aleatoria simples. A normalidade pode ser verificada a partir dos
por meio de graficos ou de festes de normalidade. Contudo, ndo ¢ possivel verificar a partir dos dados se
a amostra foi aleatoria simples.

5. Assim como todo TH feito com amostra pequena tem menos poder do que os THs feitos com amostras
grandes, todo IC feito com amostras pequenas sera sempre menos preciso do que os ICs feitos com
amostras grandes.
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