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3.1. Introdugdo

Os métodos de decomposigdo sao métodos que permitem analisar ou decompor
uma série, isto €, isolar seus diferentes componentes e escrever um modelo que os relacio-
ne entre si.
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Figura 1 — Decomposicio de uma série de consumo mensal de eletricidade
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A idéia basica ¢ extrair da série um “padrdo”, isto é, um componente razoavelmente
regular e previsivel, que pode por sua vez ser decomposto em fendéncia T (trend) e sazo-
nalidade S (seasonality). O que sobra é o residuo, ou erro aleatorio E (residual ou remain-
der). Ha portanto trés componentes, que podem estar relacionados entre si por meio de um
modelo aditivo:

Z=T+S8 +E,

Ou por um modelo multiplicativo:
Zl’ = T: X S-' X E:’

Cada um destes componentes tem a sua propria série temporal, e estas sdo geral-
mente exibidas na forma de um grafico (decomposition plot) como o da Fig. 1, que mostra
o consumo mensal de energia elétrica em uma cidade americana, decomposto de forma
aditiva. A janela superior mostra a série de dados. As janelas inferiores mostram a tendén-
cia, a sazonalidade e o residuo; estes componentes, somados, resultam na série original.

O problema ¢: dada uma tnica série Z, como extrair os componentes 7, S e £?7 Os
métodos chamados de “classicos”, baseados em médias moveis ou em razdes, originaram-
se nos anos 1920 e foram durante muito tempo os métodos favoritos para extragdo dos
componentes. Em anos mais recentes, com a divulga¢do dos computadores, varios métodos
mais complexos tém sido desenvolvidos para estimar a tendéncia, usando por exemplo
regressao local e loess; contudo, as idéias basicas que norteiam a decomposi¢do de uma
série continuam as mesmas.

Estes métodos visam a andlise, para que o comportamento da série possa ser
melhor compreendido; ndo servem para a previsao, porque nao indicam como cada um
destes componentes ira se comportar no futuro. Como foi visto no capitulo anterior, ¢ rela-
tivamente facil prever a sazonalidade, ja que seu padrio ¢ bastante estavel. Os métodos de
decomposicio, contudo, ndo produzem um modelo para a fendéncia que possa ser extra-
polado para o futuro (especialmente no médio ou longo prazo), e o residuo sera sempre
imprevisivel.

Nota sobre a terminologia : nivel e tendéncia

Nos métodos de previsdo que utilizam médias moveis (Cap. 4) e amortecimento
exponencial (Cap. 5), existe uma distingdo muito clara entre os conceitos de nivel e de ten-
déncia de uma série. O nivel é o valor médio da série em um dado instante, descontados os
efeitos da sazonalidade e do erro aleatorio. A fendéncia é a variagao do nivel da série entre
um instante e outro. Uma analogia pode ser feita com o céalculo: o nivel € o valor da funcio
num dado instante, e a tendéncia ¢ a derivada da fungdo naquele instante. Estes métodos de
previsdo procuram, primeiro, estimar o nivel atual da série; depois, estimar a tendéncia; por
fim, combinando estas duas estimativas, tentar prever onde estara o nivel da série nos pro-
Ximos instantes.

Nos textos sobre decomposi¢do de séries, porém, o significado destes termos ndo ¢
tdo bem definido. Como o interesse ndo ¢ prever o futuro de uma série, e sim descrever seu
passado, a palavra “tendéncia” (ou “tendéncia/ciclo”) costuma ser usada para indicar a
série de estimativas do nivel ao longo do tempo. Um exemplo disto estd no painel trend da
Fig. 1. Quem trabalha com previsdes pode considerar que este grafico mostra a trajetoria
passada do nivel da série; os textos sobre analise de séries, porém, consideram que este
grafico mostra a tendéncia (trend) da série. Neste texto, procuraremos usar a palavra nivel
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para indicar o valor da série estimado em um instante definido, e fendéncia para indicar a
série de valores do nivel a cada instante. Algumas vezes, usaremos indistintamente os dois
termos, para que a notag¢do aqui seja coerente com a usada na maioria dos livros.

3.2. Extracio do tendéncia
3.2.1. Médias moveis simples

O método mais simples de “amortecer” uma série — isto ¢, de conseguir uma esti-
mativa suavizada do nivel a cada instante, eliminando a sazonalidade e o erro aleatorio —, €
o de calcular seqiiéncias de médias moveis. A média movel € uma média aritmética dos
dados contidos em uma “janela” no tempo; esta média ¢ a estimativa do nivel da série no
instante central daquela janela. A ordem m da média movel € o numero de instantes no
tempo que a janela abrange.

Suponhamos por exemplo uma série Z,, e calculemos as médias moveis M de ordem
m=3. A primeira média sera calculada pela média das trés primeiras observagdes; esta
meédia € a estimativa do nivel no instante =2:

|
Mz :E(Zl +Zz+23)

Deslocando a janela de tempo um instante a frente, calculamos a segunda média movel,
que sera a estimativa do nivel no instante =3:

M3 %(Zz "‘Zs +Z4)

Se a série tem N valores, a ltima média movel calculada sera My.; :

1
MN—I = E(ZN—Z + ZN—I + ZN)

As médias moveis correspondentes aos extremos da série (M; e My) ndo podem ser calcu-
ladas.

Do ponto de vista da aplicagdo pratica, o problema ¢ escolher a ordem m que leve a
melhores resultados. Quanto maior a ordem, maior sera o amortecimento da série (isto &,
mais suave serd a curva que representa a trajetoria do nivel). A Fig. 2 mostra, como exem-
plo, uma série de vazoes anuais do rio Nilo, amortecida por médias moveis de ordens m=3
e m=15; ¢ facil ver que a estimativa do nivel na Fig. 2B (m=15) é bem mais amortecida do
que a da Fig. 2A (m=3). Em termos estatisticos, isto ¢ equivalente ao que acontece quando
tomamos médias de amostras aleatorias: quanto maior a amostra, mais reduzido sera o efei
to da aleatoriedade (isto é, menor o erro amostral), ¢ melhor sera a estimativa da média
populacional; nas séries temporais, quanto maior a ordem, melhor sera a estimativa do
nivel.

As médias moveis de ordens elevadas, no entanto, levam a perda de estimativas do
nivel em muitos dos instantes iniciais e finais da série. Se a série tem M observagoes, ¢ a
ordem da média movel ¢ m = 3, como no exemplo acima, ndo poderdo ser calculadas as
médias, M; e My. Para médias moveis de ordem m qualquer, a primeira média calculada ira
corresponder ao instante =(m+1)/2; a Gltima ira corresponder ao instante t=N-(m-1)/2.

ud
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Portanto, quanto maior a ordem m, maior serd a quantidade de valores do nivel, nos extre-
mos da série, que ndo poderdo ser estimados.
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Figura 2. Nivel anual do rio Nilo, nivel amortecido por médias méveis

Os valores perdidos no inicio da série geralmente ndo tém muita importincia; os
valores perdidos no final, contudo, podem causar dificuldades, se quisermos usa-los como
pontos de partida para previsdes do nivel. Suponha que a série original tenha N observa-
¢oes, e queremos fazer previsdes para o instante /=N+/. Se usamos médias moveis de
ordem m=5 para amortecer a série, ndo havera estimativas do nivel para os instantes t=N-1
e t=N; teremos que conseguir estas estimativas de outra forma, antes de fazer previsdes
para (=N+1.

Nos graficos da Fig. 2, usamos a solugdao mais simples para obter estas estimativas
faltantes: repetimos os valores da primeira e da Gltima média calculadas. A série tem
N=106 observacdes. No grafico B, a primeira e a ultima médias sdo, respectivamente:

M, =%(z] +ZytZg o+ 24+ Z)5)

1
My, = E(Zg2 +Zgy+ . Loyt Zps + Zg6)

Fizemos as estimativas de todos os valores do nivel entre os instantes /=1 a =7 como
iguais a Mj, e todos os valores entre os instante /=100 a =106 como iguais a Mgy,

Outra forma de obter as estimativas para o nivel nos instantes finais da série ¢ dimi-
nuir progressivamente o tamanho das janelas moveis. Por exemplo, se usamos m=7 na
maior parte da série, calculamos a estimativa para os trés Gltimos instantes usando ordens
5,3el:

1
N-2 T E(ZN—4 + ZN—3 + ZN—2 + ZN—I + ZN)

M
1

MN-I = E(ZN—?_ + ZN—l + ZN)
M

N=ZN
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E claro que estas estimativas nio terdo a mesma qualidade das estimativas anteriores, feitas
com janelas maiores; para termos resultados melhores, serd preciso usar métodos mais
complicados, como as médias ponderadas assimétricas (Se¢do 3.2.3).

No caso de séries sazonais, ndo ha muita dificuldade na escolha do m: ele deve ser
igual ao periodo sazonal, ou a um multiplo deste. Por exemplo, a série de cargas elétricas
diarias de uma cidade mostrada na Fig. 3 tem periodo sazonal s=7 : ha uma sazonalidade
semanal, ja que o consumo ¢ mais alto nos dias de semana, e cai no fim-de-semana. A Fig.
3A mostra o nivel estimado usando médias moveis de m=7; a janela mével inclui uma
observagdo para cada um dos dias da semana. Na Fig. 3B, o nivel ¢ estimado por m=21; a
janela movel inclui agora trés observagdes para cada dia da semana, o que resulta numa
estimativa mais amortecida. Em ambos os graficos, as estimativas nos extremos da série
foram obtidas repetindo-se a primeira e a Gltima médias disponiveis.
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A. Médias moveis de ordem m=7 B. Médias moveis de ordem m=21

Figura 3. Consumo didrio de energia elétrica em uma cidade

3.2.2. Médias moveis duplas (ou centradas)

Nos exemplos vistos até agora, as médias moveis tinham ordem impar. Se uma
série tem periodo sazonal par (por exemplo, séries de dados trimestrais, com sazonalidade
s=4; ou dados mensais, com sazonalidade s=12), serd preciso usar médias duplas (ou cen-
tradas). A idéia ¢ calcular duas médias de ordem m, e depois tirar a média das duas.

Suponha, por exemplo, a série de consumo trimestral de energia mostrada na Fig. 4.
A primeira média movel a utilizar devera ser ordem m;=4, igual ao periodo sazonal. Se cal-
culamos esta primeira média movel por meio de :

M, =%(ZI +Z,+Z,+Z,)

obtemos uma estimativa do nivel que corresponderia ao instante /=2,5 - o que ndo faz sen-
tido na pratica. Deslocando a janela mével um instante a frente, calculamos a estimativa
correspondente ao instante /=3,5:

M, :31(22 +Z,+Z,+Z,)

wh
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Figura 4. Consumo trimestral de energia elétrica em uma cidade

Tirando a média destes dois valores (isto ¢, uma média movel de ordem m,=2), represen-
2 + 3 7 .
tada por M , encontramos uma estimativa do nivel no instante /=3:

1
Msm :E(Mz,s +M3.5)

Esta média M'?/ corresponde na verdade a uma média ponderada de ordem m=>5:

Vi =l(zl+22 +Z,+2Z, 4 Z,+Z, +Z4+ZS]
3 2 4 4
1
M =§(ZI +2Z,+2Z,+2Z,+Z,) 1)

Representaremos a ordem desta média movel como 2 x 3 - isto ¢, uma média movel
de ordem m>=2 sobre as médias moveis de ordem m;=3. Note que esta média leva em con-
ta 0 mesmo niimero de observagdes para cada trimestre do ano: no exemplo, as do observa-
coes do 2°, 3° e 4° trimestres tém pesos igual a dois; a do 1° trimestre de um ano (Z,) sdo
somadas com a do 1° trimestre do ano seguinte (Zs). Portanto, cada trimestre aparece duas
vezes na média.

A média dupla ¢ usada freqlientemente para amortecer séries mensais. Os graficos
da Fig. 5A mostram uma série de consumo mensal de energia de uma cidade, amortecidos
por médias moveis duplas de ordem 2x12.

E claro que médias com ordens miltiplas da periodo sazonal também serviriam; por
exemplo, médias duplas de ordem 2x24, como na Fig. 5B. O amortecimento seria maior,
como pode ser visto comparando as figuras A e B; o problema, contudo, ¢ a quantidade de
dados perdidos nos dois extremos da série de estimativas (12 em cada extremo).

E importante notar que, para séries sazonais, a “dessazonalizagdo” (isto ¢, a remo-
¢ao do efeito da sazonalidade) so € obtida se a ordem m da média for igual ao periodo
sazonal s, ou a um multiplo deste.
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Figura 5. Consumo mensal de energia em uma cidade — amortecimento por médias méveis duplas

Se m < s, alguns instantes do ciclo sazonal ndo estardo representados na média, que
ficara tendenciosa; se m > s, alguns instantes estardo na média com mais freqiiéncia que
outros, 0 que novamente levara a um resultado tendencioso. Se usamos média movel de
ordem m=8, por exemplo, para amortecer uma série semanal (s=7) de consumo de energia,
um mesmo dia da semana sera incluido duas vezes na média, o que ird enviesar a estima-
tiva (suponha por exemplo que a janela va de um domingo até outro domingo; havera dois
domingos incluidos, o que devera resultar numa média mais baixa que o valor correto). A
Fig. 6 mostra o que acontece se tentarmos amortecer a série mensal (s=12) da Fig. 5 por
meio de médias méveis simples de ordens m=7 ou m=11; ¢ bem evi-dente que o efeito da
sazonalidade ndo foi totalmente eliminado das estimativas do nivel.
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A. Média movel de ordem m=7 B. Média movel de ordem m=11

Figura 6. Consumo mensal de energia elétrica, amortecimento por médias méveis

Nos exemplos da Fig. 5, usamos médias moveis duplas de ordens pares (2x4 e
2x12). Também podem ser feitas médias méveis duplas de ordem /mpar, sobre séries de
médias méveis de ordem impar ou par; a utilidade disto ¢ conseguirmos médias pondera-
das (ao invés de médias simples), com diferentes conjuntos de pesos. Por exemplo, para
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calcularmos médias moveis duplas 3x3, calculamos primeiro seqiiéncias de médias moveis
simples de ordem m;=3:

1
M, :E(Zl +Z,+Zy)
M, =%(ZZ+Z3 +7Z,)
M, =%(Z3+Z4+ZS)
Depois, as médias moveis duplas também de ordem m,=3:
l(Z, +2,+2Z  L+Z,+Z, | Z, +Z4+Zsj

1
MP =—(M,+M,+M,)==
=M Mo M) =3 3 3 3

M =$(z, +2Z,+3Z,+2Z,+Z,) )

O resultado, portanto, ¢ uma média mével ponderada de ordem m=5, onde os pesos for-

mam uma seqiiéncia de valores que crescem e decrescem simetricamente:
pesos: 0,111 0,222 0,333 0,222 0,111

Compare esta sequiéncia de pesos com aquela gerada por uma média movel dupla 2x4, no
exemplo acima (eq. 1, repetida abaixo):

MP = é(z, +2Z,+2Z,42Z,+Z;)

pesos: 0,125 0,250 0,250 0,250 0,125

3.2.3. Médias moveis ponderadas

Como visto acima, usar médias moveis duplas equivale a atribuir seqiiéncias de
pesos desiguais as observagoes dentro de uma janela. O pesquisador também pode, se qui-
ser, especificar qualquer outra seqiiéncia de pesos que lhe interesse. Em geral, uma média
movel ponderada de ordem m pode ser escrita como:

Mf = iajszi

J—k

onde k=(m-1)/2, e os pesos sdo representados por a;. E preciso que a seqiiéncia seja simé-
trica (a; = a;), e a soma dos pesos seja igual a unidade. As médias moveis simples sdo
casos particulares das meédia ponderada, onde os pesos sdo todos iguais (a; = I/m, para
qualquer j). Veremos depois que as médias moveis ponderadas, por sua vez, sdo um caso
particular dos filtros lineares (Segdo 6.5). Por exemplo, a média mével 2x3 em (2) pode
ser escrita uma média simples ponderada da forma:

2
M, ;= Za_,fzu,.‘ =a,Z;,+a,Z; ,+a 2, +a,Z,,+a,,Z;,,

j=2

M,=0]111xZ,+0,222x Z, +0333x Z, +0,222x Z, +0,111x Z,

Os pesos sdo, portanto:
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ap=0,333 a;=0,222 a;=0,111

Ha varias seqiiéncias de pesos que sdo bastante usadas na pratica, e algumas sdo

conhecidas pelos nomes dos pesquisadores que as propuseram. Por exemplo, o Quadro 1,

abaixo, mostra algumas das seqiiéncias de pesos resultantes de médias moveis simples ou
G 1

duplas, comparadas com as seqiiéncias propostas por Spencer e por Henderson [ ].

As seqiiéncias destes pesos sdo sempre simétricas, portanto a;=a.;. O grafico da Fig.
7A mostra a seqiiéncia de 15 pesos sugeridas no método §75, de Spencer. Em geral, as
seqiiéncias tém formas similares a esta: 0s pesos sdo simétricos e decrescem em torno do

peso correspondente ao instante em que esta centrada a janela maével.

Ordem a0 al a2 a3 ad a5 a6 a7 a8
all

Média mével simples
3 0,333 0,333
5 0,200 0,200 0,200

Médias moveis duplas

2x4 0,250 0,250 0,125 (eq. 3.2.2.a)
2x12 0,083 0,083 0,083 0,083 0,083 0,083 0,042
3x3 0,333 0,222 0,111 (eq. 3.2.2.Db)

3x5 0,200 0,200 0,133 0,067

Pesos propostos por Spencer
si5 0,231 0,209 0,144 0,066 0,009 -0,016 -0,019 -0,009

alo

sz21 0,171 0,1¢3 0,134 0,096 0,051 0,017 -0,006 -0,014 -0,014 -0,009 -0,003

Pesos propostos por Henderson

85 0,558 0,294 -0,073

B9 0,330 0,267 0,119 -0,010 -0,041

H13 0,240 0,214 0,147 0,066 0,000 -0,028 -0,019

H23 0,148 0,138 0,122 0,097 0,068 0,039 0,013 -0,005 -0,015 -0,016 -0,011 -

0,004

Pesos propostos por Makridakis et al.
M19 0,104 0,102 0,094 0,082 0,067 0,050 0,033 0,016 0,005

Quadro 1. Seqiiéncias de pesos sugeridas para médias ponderadas

As seqiiéncias de pesos sugeridas por Spencer e por Henderson nao foram criadas
arbitrariamente, mas surgiram de diversas combina¢des de médias moveis e triplas. Em
~ . Pt 1 ’
geral, qualquer fungdo que gere pesos simétricos pode ser usada. Por exemplo, em ['] é

proposta esta fungdo quadratica para gerar seqiiéncias de pesos:
e a2q2 B , m—1
0(j) = [(A=(j/k) ) para-k<j<k onds k=——

0 para| jl>k 2

__90)
2.00)

i=—k

a;

Para uma média movel ponderada de m=19, a seqiiéncia de pesos gerada esta repre-sentada

no grafico da Fig. 7B. A série de temperaturas médias anuais globais, e o nivel amortecido

por médias ponderadas por estes pesos, estdo na Fig. 8A.
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Figura 7 — Seqiiéncias de pesos sugeridas para médias ponderadas

A vantagem destas médias ponderadas, em relagdo a média simples, € que a estima-
tiva da tendéncia sera mais suave. Na média mével simples, a cada momento em que a ja-
nela de tempo ¢ deslocada para frente uma nova observagio entra no calculo, e a observa-
¢do mais antiga ¢ descartada. Se estas duas observagdes tém valores muito desiguais entre
si, a média movel sofrera uma grande variagdo. Nas médias ponderadas, as observagdes
nos extremos da janela tém pouco peso; portanto a entrada ou saida de observagoes tem
pouco efeito imediato sobre o valor da média.

desvio de temperatura (C) desvio de temperatura (C)

044

00
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-064
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— Amortecido — Previsto
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
ano ano
A. Com pesos M19 B. Com pesos M19, ponderagdo assimétrica

Figura 8 — Amortecimento da série globip

A dificuldade no uso de qualquer método de amortecimento por médias moveis,
ponderadas ou nio, € estimar o nivel nos extremos da série (problema ja mencionado na
secdo 3.2.1). Se as médias sdo ponderadas por uma fungdo determinada pelo pesquisador,
como as da Tabela 1, podemos usar séries assimétricas de pesos. Por exemplo, se amorte-
cemos uma série de N observagdes usando o método M 19, os pesos assimétricos para os
ultimos nove ultimos instantes (r=N-§ a t=N) serdao dados por:
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a; ={1J—J L =98 .. Nt

Nt
> 0a)

i==9

A Fig. 9 mostra as seqiiéncias de pesos para os trés ultimos instantes de uma série.
A Fig. 8B mostra a série de globtp com o nivel estimado por meio da seqiiéncia de pesos
M19, usando pesos assimétricos nos extremos da série. O método consegue estimativas nos
extremos que parecem bem melhores do que as conseguidas pela simples repetigdo de
valores (Fig. 8A). Contudo, se ha uma tendéncia crescente, as estimativas feitas nos extre-
mos da série serdo sempre enviesadas, qualquer que seja o método baseado em médias
moveis: se o nivel estd se elevando, o nivel a cada instante sera provavelmente superior a
média das observagoes passadas (ponderadas ou nio).

mlm

005

w e

A. Pesos no instante t=N-2 B. Pesos no instante t=N-1 C. Pesos no instante =N

Figura 9

Em geral, para fins de analise (que € o objetivo principal da técnica de decomposigédo), o
erro das estimativas nos extremos da série ndo importa muito, especialmente se a série for
longa; se as estimativas nos extremos forem realmente importantes, contudo, uma solugao
possivel ¢ abandonar os métodos baseados em médias moveis, e usar métodos baseados em
regressao local, vistos na proxima secao.

3.2.4. Regressdo local e loess

Se a série tem uma tendéncia bem marcada, uma extensdo natural dos métodos aci-
ma seria o de ajustar dentro de cada janela movel um modelo linear ou quadratico, ao invés
de simplesmente calcular uma média; em seguida, usar o valor obtido pelo modelo como
estimativa do nivel no instante central da janela. Se usamos o modelo linear em janelas de
ordem m, a estimativa do nivel no instante ¢ sera dada por:

T, =a+bt

onde a e b sdo os parametros da reta de regressdo, que deverdo ser re-estimados a cada ins-
tante. Para isto, 0 método usual € o de minimizar a soma dos quadrados dos erros dentro da
janela (SQE), dada por:

m—1

k
SQE = Z[Zm' _Tw‘]z onde £ =T

=k
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projetoXsigma

Este ¢ o método de minimos quadrados ordinarios, o mais freqlientemente usado para ajus-
tar modelos lineares de regressao.

A Fig. 10 mostra um exemplo da estimac¢do do nivel por regressdo linear local, num
trecho da série globtp. Uma janela movel de m =11 ¢ ajustada sobre os instantes =40 a
=51 (a janela esta destacada no grafico, com fundo cinza). Uma reta de regressdo ¢ ajusta-
da neste intervalo; o valor calculado pelo modelo no centro da janela (r=46) sera a estimati-
va do nivel neste instante (indicada no grafico por uma cruz). A seguir, a janela ¢ movida
um instante a frente (/=41 a /=52), uma nova reta ¢ ajustada, e o valor correspondente ao
instante =47 sera a estimativa do nivel neste instante. Criando uma rotina em R que ajusta
recursivamente estas retas de regressao, obtemos a série de estimativas do nivel mostradas
na Fig. 11B.

desvio de temperatura (C)

0.1
004 /

-0.14

024

T T T I ano

45 50 55 60

Figura 10 — Estimativa do valor amortecido em /=46. Amortecimento por regressio local, n=11

Como no caso da média mével, ndo teremos estimativas para os primeiros cinco
valores, e para os cinco ultimos; o problema pode ser resolvido simplesmente prolongando
a reta obtida na primeira janela (=1 a =11), para obtermos as estimativas M, a M5, e pro-
longando a reta obtida na tltima janela (r=N-11 a N), para obtermos as estimativas de My.4
a My. E facil demonstrar que o nivel estimado por meio de regressdo linear simples (néo-
ponderada) ¢ equivalente ao estimado pela média da janela movel; a reta de regressdo de
uma variavel ¥ em uma variavel X passa sempre pelo ponto meédio (XmediosYmedio)- A regres-
sdo linear simples, portanto, s6 tem utilidade especial nos instantes do inicio e do fim da
série, pois pode fornecer estimativas do nivel nestes instantes melhores do que as consegui-
das pela média movel (compare as estimativas por média e por regressao, na Fig. 11, espe-
cialmente no final da série).

A estimagdo do nivel por regressao pode conseguir resultados mais interessantes,
porém, se procurarmos minimizar a soma dos quadrados ponderados dos erros dentro de
cada janela, dada por:

SOPE=Y BZ,,-T,,F

=
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A estimativa da tendéncia resultante sera uma curva mais suave (com maior amor-
tecimento) do que a obtida pela regressdo simples. A idéia ¢ similar a usada nas médias
moveis ponderadas (Secao 3.2.3), e as mesmas sequiéncias de pesos ja vistas podem ser
usadas para fornecer os coeficientes f5;. As equagdes para o ajuste das retas de regressdo,
contudo, sdo bem mais complicadas, e ndo serdao vistas aqui.

desvio (C) desvio (C)

04 04-]

024 024
00+ 00+
024

-024

<04+ <04~

-06—
— Observado — Observado
— Amortecido — Amortecido

T T T T T T T T T T T T

0 20 40 60 80 100 0 20 40 60 80 100
ano ano

A. Média moével, ordem n=5 B. Regressdo local, ordem n=5

Figura 11. Série globtp, amortecimento por média mével vs. regressio local

Um método também baseado em regressdo local, e encontrado na maioria dos paco-
tes estatisticos, ¢ o de regressdo loess. Este ¢ um método iterativo que ajusta curvas de pri-
meiro ou segundo grau (retas ou pardbolas) a cada ponto, e procura reduzir o efeito, na
estimagao destas curvas, dos pontos discrepantes existentes na série. Em cada janela, ¢
calculada primeiramente uma regressdo local com ponderacio; a seguir, os residuos desta
regressdo (isto €, a diferenca entre os valores previstos pela reta e os valores observados)
sao examinados. Se houver residuos muito grandes, devidos a pontos discrepantes (muito
afastados da reta), a ponderagdo ¢ modificada, e os pesos correspondentes a estes pontos
sdo reduzidos. Isto diminui o impacto que pontos discrepantes possam ter sobre o calculo
da curva, fazendo que o método seja mais robusto. A curva ¢ entdo re-calculada com a
nova ponderagio, e os residuos sdo examinados novamente. O procedimento continua até
que a curva esteja estabilizada, e ndo seja mais necessdrio alterar os pesos.

3.3. Extracio da sazonalidade

Se a série tem nivel constante (isto €, ndo existe tendéncia), o padrao sazonal pode
ser estimado por meio de médias e razdes. Se a série ¢ anual, por exemplo, calculamos a
média dos valores observados a cada més: a média dos valores em janeiro, a média dos
valores em fevereiro, etc. Para obter os fatores sazonais, subtraimos destas médias o nivel
da série (se for usado um modelo aditivo, Sec¢do 3.4.1), ou calculamos a razio entre estas
médias e o nivel da série (se for usado um modelo multiplicativo, Segédo 3.4.2).
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desvio de temperatura (C) desvio de temperatura (C)
04+ 04+
0.2 0.2
0.0 00
-024 -02+
044 -0.4
064 06
— 0Observado — Observado
— Amortecido — Amortacido
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
ano ano
A. Usando span = 0.25 B. Usando span =0.75

Figura 12 — Amortecimento da série globtp usando loess

A Fig. 13A mostra, como exemplo, a série temperaturas mensais em Juiz de Fora
(MG), durante um periodo de 10 anos. A Fig. 13B mostra os perfis de cada ano, sobrepos-
tos; este grafico ¢ chamado por alguns autores de “grafico sazonal” (seasonal plot). A
média destes perfis (em vermelho), subtraida do nivel médio da série, ¢ a estimativa dos
fatores sazonais, que se repetem a cada ano (Fig. 13C).

temperatura (C) lnm_pemkum [(®]

temperatura

: |
Lo \‘
\‘ AR
U | 01 .
ARLEINANE f1]]
UV |
|‘H\ \HIU H“Pl" 18- T PR
|| } |f‘| A \ |/ |‘ ‘ I‘\\'
T
1\ o I | NE 4
R S — : !
A. Temperaturas médias mensais B. Padrio sazonal C. Fatores sazonais

Figura 13 - Temperaturas médias mensais em Juiz de Fora, 1990-1999

Se o nivel ndo for constante (isto ¢, se houver uma tendéncia na série), serd preciso
primeiro extrair a tendéncia, como veremos abaixo.

3.4. Decomposicao classica

Os processos de decomposic¢do extraem primeiro a tendéncia da série; extraem
depois a sazonalidade, e o que resta € o residuo. O processo “classico” de decomposi¢do
usa medias moveis para estimar a tendéncia; processos mais modernos usam técnicas mais
complicadas, como por exemplo o loess. (No R, processos usando médias moveis e loess
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estdo implementados nas fun¢des decompose e st 1, respectivamente, e serdo vistos na
Se¢do 3.5). A decomposigdo pode seguir modelos aditivos ou multiplicativos.

3.4.1. Decomposi¢do seguindo modelo aditivo

Neste modelo, os componentes sdo somados entre si, desta forma:
Z =T +S,+E,

onde 7;: tendéncia, S;: sazonalidade e E;: residuo. Este modelo pressupde que a amplitude
da variagdo sazonal seja independente do nivel da série. Como exemplo, tomaremos uma
série de consumo de energia elétrica de uma cidade, durante sete anos; os dados sdo men-
sais e a série contém portanto 7x12=84 observagdes. O periodo sazonal ¢ s=12. O procedi-
mento €:
(1) Amortecer a série usando uma média movel dupla 2x12. A série amortecida sera

uma estimativa da tendéncia 7,
(ii) Remover a tendéncia da série, calculando a série sem tendéncia Z’ (detrended

series); para isto, subtraimos da série original Z, a estimativa de 7; obtida em (i):

Z2'=Z,-1,=§,+E,

A série Z;” ¢ constituida apenas pelos componentes sazonal S; e erro E,.
(111)  Estimar o componente sazonal S;, constituido por uma seqiiéncia de 12 indices

sazonais (um para cada més). Para calcular estes indices, o procedimento é:

- tirar a média M da série sem tendéncia Z’; :

| 84
M=—)>» 7,
84
t=1

- calcular o fator sazonal de um més i (S;) pela diferenga entre a média das obser-

vagoes feitas naquele més, durante os sete anos, e média M da série. Para o més de

janeiro, por exemplo, a média do més (M;,,) sera calculada por:

1
M :*;(Z\+ZHK+ZES+Z§7+ZZ9+ZEV+ZH3)

Jan

O fator sazonal do més de janeiro (Sj.,) sera dado pela diferenca entre esta meédia do
més e a média de toda a série:

Son=M M

Jan Jan
A seqiiéncia de fatores sazonais correspondentes a série original ¢ feita repetindo a
série de 12 indices mensais, ano apds ano.
(iv)  Estimar o componente aleatdrio, subtraindo da série sem tendéncia Z’ o componen-
te sazonal S estimado em (iii).

Estes passos podem ser ilustrados graficamente por um “grafico de decomposi¢io”
(decomposition plot), que mostra, em quatro painéis superpostos, a série original e seus trés
componentes: a tendéncia, o componente sazonal e o erro aleatorio (Fig. 17). Usaremos
esta série nos exemplos de decomposi¢ao usando fungdes do R, na Se¢do 3.3.3).
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3.4.2. Decomposi¢do seguindo modelo multiplicativo

O modelo multiplicativo € mais comumente usado quando a amplitude da variagao
sazonal ndo € constante ao longo da série, mas aumenta com a elevagao do nivel. Isto pode
ser observado, por exemplo, na série da Fig. 14A, que mostra o nimero mensal de passa-
geiros (em milhares) em viagens aéreas internacionais de 1949 a 1960 (esta série, chamada
no R de AirPassengers, do pacote datasets, é provavelmente o exemplo mais citado na
literatura sobre séries temporais).

passageiros (x 1000) log(passsageiros)
6.54

| I

600

500 +

100 - ano ano
T T T T T T T T T T

1950 1952 1954 1956 1958 1950 1950 1952 1954 1956 1958 1960
A - Valores originais B — Logaritmos dos valores originais

Figura 14. Série AirPassengers

Ha duas maneiras de decompor esta série. A primeira, ¢ tentar transforma-la, de
modo a estabilizar a variancia; se isto for conseguido, o modelo aditivo podera ser usado.
A transformacdo mais comum € a logaritmica. Calculando os logaritmos da série original,
obtemos a série na Fig. 14B. A variagdo sazonal parece agora bastante regular, e um mode-
lo aditivo pode ser tentado.

A segunda opc¢do, adotada a seguir, ¢ a de fazer a decomposicido segundo um
modelo multiplicativo:
A t = ?: xS f XE:

onde 7}: tendéncia, S,: sazonalidade e E; = residuo. O procedimento a ser seguido € :
(1) Amortecer a série usando uma média movel dupla 2x12. A série amortecida sera
uma estimativa da tendéncia T,
(2) Remover a tendéncia da série, calculando a série sem tendéncia Z'; para isto, cal-
cular a razdo entre a série original e a estimativa de 7, obtida (i):
t _? = xiiE[ = S!E{

4 t

|l

(v) Estimar o componente sazonal, constituido de uma seqiiéncia de 12 indices sazo-
nais. Para calcular estes indices, o procedimento ¢:
- tirar média M da série sem tendéncia Z; :
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1 84
M=—> 27,
84

t=1
- calcular o fator sazonal de um més i (S;) pela razdo entre a média das observagdes
feitas naquele més, durante os sete anos, e média M da série. Para o més de janeiro,
por exemplo, a média daquele més (M;,,) sera calculada por:

|
M, = 7(Z'|+Z'|3+Z'25 +Z2'y7+Z 19+ 261+ 2'73)
O fator sazonal do més de janeiro (S;.,) sera dado pela razao entre a média deste
més e a média de toda a série:

L Mjm'.'
Jjan M

A seqiiéncia de fatores sazonais correspondente a série original ¢ feita repetindo a
série de 12 indices mensais, ano apds ano.

(vi)  estimar o residuo, dividindo a série Z’; pelo componente sazonal estimado em (iii).
Se o instante ¢ corresponde a um més de janeiro, isto significa:

E _ Z‘; _ SjtmEf

=t =
Sjan S_,l'm:

O grafico da Fig. 15 mostra o resultado desta decomposi¢do, feita em R. Note que a série

de residuos ndo parece ter varidncia constante, o que ¢ uma indicagio de que o modelo ndo

¢ inteiramente adequado.

Decomposition of multiplicative time series

observed
1 1 L

450100 200 300 400 SO0
1

trend
250 350
I 1 1 1 1 1 |

12 150

seasonal

random

080 095 100 105 106 09 10 141
1

1950 1852 1954 1956 1958 1960
Time

Figura 15. Decomposi¢io da série AirPassengers, usando a fun¢io decompose
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3.5. Funcdes do R para a decomposicio de séries

Ha duas fungdes no R, ambas no pacote stats, que fazem a decomposigdo de
séries temporais : a fun¢do decompose, que usa médias moveis, e a fungdo st 1, que usa
loess. Mostraremos abaixo exemplos do uso destas duas fungdes para decompor uma
série de consumo mensal de energia elétrica em uma cidade dos EUA (a mesma série usa-
da na Fig. 1).

3.5.1. Decomposi¢do usando a fun¢do decompose.

Esta fungdo faz a decomposigdo ‘classica’ usando um modelo aditivo, e estima a
tendéncia e os fatores sazonais por meio de médias moveis. A série a ser decomposta deve
pertencer a classe ts (fime series) de variaveis.

z=scan ('cargasmensais.txt"')
x=ts(z, frequency=12, start=c(1960,1))
plot(x, col="blue')

A série abrange sete anos, e tem uma tendéncia crescente aproximadamente linear.
A sazonalidade ¢ bastante clara; o consumo ¢ mais baixo no meio do ano (verdao nos EUA),
e mais alto no inicio e final do ano (inverno, quando a eletricidade ¢ usada para o
aquecimento).

A fungdo decompose retorna um objeto dec que tem como campos a série de
fatores sazonais estimados ($figure), a série constituida pela repeti¢do deste padrdo ao
longo do periodo abrangido pelos dados ($seasonal), a tendéncia / ciclo ($trend), e 0s
residuos ($random).

dec=decompose (x)

decS$figure

# padrao sazonal repetido a cada ano

ts.plot (dec$figure, main="padrao sazonal anual")

# padrao sazonal ao longo dos sete anos da serie
windows ()
ts.plot (dec$seasonal, main="sazonalidade")

# tendencia / ciclo
windows ()
ts.plot (decStrend, main="tendencia / ciclo")

Estes componentes sdo representados na Fig. 16. O grafico de decomposi¢@o, mos-
trando como foi analisada a série, pode ser feito pelo comando plot (Fig. 17). Note que a
série original de cargas (no painel superior do grafico) perde parte dos seus dados no inicio
e no final do periodo — o que ¢ caracteristico dos métodos de amortecimento da tendéncia
por médias moveis. Note também que as janelas ndo tém todas a mesma escada vertical, o
que dificulta a comparagdo das grandezas relativas dos componentes.

windows ()

plot (dec)
# decomposition plot
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Figura 16. Componentes da série de cargas mensais (decomposicio por decompose)
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Figura 17. Decomposicdo da série de cargas mensais (usando fun¢io decompose)

3.5.2. Decomposi¢do usando a fung¢do st 1.

Esta fungdo estima a tendéncia usando a técnica de loess (discutida na Segao 3.2.4),
e retorna um objeto dec que pertence a uma classe propria de variaveis, a st 1. Nos varios
campos do objeto estdo incluidos os componentes sazonalidade, tendéncia/ciclo e residuos,
além de varios detalhes sobre o métodos usado para a decomposigao.
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z=scan ('cargasmensais.txt")
x=ts (z, frequency=12, start=c(1960,1))

dec=stl (x,s.window="periodic")
class (dec)
names (dec)

# sazonalidade
ts.plot (decStime.series[,1], main="sazonalidade")

# tendencia/ciclo
windows ()

ts.plot (decStime.series[,2], main="tendencia/ciclo")
# residuos

windows ()

ts.plot (dec$time.series([,3], main="residuos")

# decomposition plot

windows ()
plot (dec)

Estes componentes estdo representados na Fig. 18.

sazonalidade tendencialciclo

residuos

-~
8000 8000

00 4000

S

2000

!
000

decfime
0

T T T 7 T T
i e
008 1068 ioat 1060 1961

Tima Tir

A — Sazonalidade B - Tendéncia

1962 1963 1964 1965 1986 1867

C - Residuo

Figura 18. Componentes da série de cargas mensais (decomposi¢io por stl)

O grafico que retine estes componentes pode ser feito pelo comando plot (Fig.
19). Comparando este grafico com o da Fig. 17, observamos duas vantagens do método
loess para a estimativa da tendéncia, em relagdo ao de médias moveis. Primeiro, a estimati-
va da tendéncia obtida ¢ mais suave (embora isto dependa dos pardmetros escolhidos para
0 loess). Segundo, a série original de cargas (no painel superior do grafico) ndo perde

dados no inicio e no fim do periodo, como aconteceu quando usamos a

fungdo decompo-

se; a tendéncia nos extremos da série ¢ estimada pela extrapolagcdo do modelo de regres-

sdo local que ¢ a base do método.

Na Fig. 19, note também que as janelas também ndo tém todas a mesma escada
vertical, mas ha barras verticais a direito do grafico, que facilitam a comparagio das gran-

dezas relativas dos componentes.
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Figura 19. Decomposicao da série de cargas mensais (usando funcio stl)

3.6. Conclusao

Os métodos de decomposicdo sdo bastante usados para a analise de séries tempo-
rais, principalmente na administragdo e em estudos econdmicos. A decomposi¢do serve
para apoiar o planejamento; por exemplo, para isolar no valor observado da série a parcela
devida a variagdo sazonal, que devera estar presente novamente no ano que vem, daquelas
devidas a tendéncia, cujo valor no proximo més talvez possa ser aproximadamente previs-
to, e ao erro aleatorio, que ¢ essencialmente imprevisivel. Além disso, a decomposigdo ¢
usada para eliminar o efeito da sazonalidade numa série; a série da qual a varia¢do sazonal
foi removida é chamada de série dessazonalizada. E comum que dados econdmicos sejam
publicados de forma dessazonalizada, para facilitar comparagdes dos valores em diferentes
instantes, ja que comparagdes na série original nem sempre sdo possiveis. Se observamos
um aumento nas vendas de novembro para dezembro, por exemplo, ndo podemos concluir
dai que a economia sofreu um aquecimento, ou tirar outra concluso do mesmo género - o
aumento pode ser apenas conseqiiéncia da proximidade do fim do ano e do Natal. Este
efeito provavelmente serd passageiro, € no més seguintes as vendas cairdo de novo ao nivel
normal. Uma conclusdo segura so pode ser tomada se descontarmos este efeito sazonal,
isto €, se dessazonalizamos os dados, e observamos apenas a tendéncia da série.

Do ponto de vista estatistico, os métodos de decomposigao tem defeitos tedricos,
pois foram desenvolvidos empiricamente, no inicio do século XX, e ndo tém base estatis-
tica. No modelo aditivo (se¢do 3.4.2), por exemplo, o valor obtido no passo (i), ndo ¢ exa-
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tamente a tendéncia 7}, mas sim uma estimativa 7, dela. Quando subtraimos este valor de

Z;, no item (ii), o que obtemos ndo € a série sem tendéncia desejada
Z2'\=Z,-T,=§,+E,

e sim
7'=7,-T, =S, +E, +¢,

onde o erro & representa o erro presente na estimacgao de 7, que ¢ desconhecido. Este erro
& 1rd se propagar na estimagdo dos componentes S; e E;. A série E,, em particular, ndo
devera atender as condig¢des exigidas do residuo de num modelo probabilistico, pois em
geral sera uma série de observagdes auto-correlacionadas. Para um estatistico, isto significa
que a informagdo contida nos dados ndo foi inteiramente aproveitada (a idéia de filtrar a
série até que o residuo remanescente seja descorrelacionado esta na base dos modelos
ARIMA, vistos no Cap. 6).

Os métodos de decomposicdo, no entanto, continuam a ser largamente empregados,
em vista de sua simplicidade e da facilidade de interpretacio de seus resultados. Métodos
como os vistos acima, ou variantes destes, estdo implementados em varios pacotes estatis-
ticos comerciais, ou em planilhas eletronicas. Existem métodos mais complexos, por exem-
plo o Census II (ver detalhes em ", p.113) e os baseados em kernels (ver por exemplo 1,
p.16); a idéia basica porém € sempre a mesma, € as variagoes existem principalmente nas
técnicas para a estimagao da tendéncia.
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