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3.4.4. Modelo normal

3.4.4.1. Introdugdo aos modelos matematicos
(i) Porque usar modelos matematicos
(ii) Como selecionar os modelos
3.4.4.2. Caracteristicas do modelo normal
(i) Fungéo de densidade
(ii) Parametros do modelo normal
(iii) Variavel normal padronizada
(iv) Exemplo do uso da variavel padronizada
(v) Célculo das probabilidades usando a tabela da curva normal padrdo
3.4.4.3. Por que o modelo normal é tdo importante?
(i) Porque tem propriedades matematicas tUteis
(ii) Porque serve de modelo para muitas variaveis da natureza e da tecnologia
(iii) Porque serve de aproximagdo para outros modelos
(iv) Porque esta na base de varias técnicas estatisticas importantes
3.4.4.4. Selecdo e ajuste de um modelo normal
(i) Como identificar o modelo : histogramas e grafico de quantis
(ii) Ajuste do modelo
(iii) Consideragdes finais
3.4.4.5. Uso do modelo normal como aproximagdo de outras distribuicdes
(i) Aproximacdo da distribuicio binomial
(ii) Aproximacdo da distribui¢@o de Poisson

Este capitulo apresenta o modelo normal ou gaussiano, certamente o modelo pro-
babilistico mais importante da Estatistica. Seu grafico tem a forma de um sino (Fig. 1A),
forma que passou a ser associada com “Estatistica” na cabec¢a das pessoas, e costuma por
isto ser usada em propaganda ou logotipos como o da ABE (Fig. 1B).
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Figura 1. Curva normal

Na se¢do 3.4.4.1 iremos discutir o que sdo modelos matematicos e para que servem,;
este assunto ja foi mencionado em se¢des anteriores, mas € tdo importante, especialmente
em relacdo ao modelo normal, que vale a pena voltar a ele. Na sec¢do 3.4.4.2 mostramos as
caracteristicas do modelo normal e como ele ¢ usado; na 3.4.4.3, algumas de suas proprie-
dades, e porque ele € tdo 1til na Estatistica; na 3.4.4.4, como identificar e ajustar um mode-
lo normal para uma dada varidvel; por fim, na 3.4.4.5, como o modelo normal pode ser
usado como aproximacao para outros modelos.
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3.4.4.1. Introducio aos modelos matematicos
(i) Porque usar modelos matemdticos

Toda ciéncia se baseia na sele¢ao de modelos que representam de forma simplifica-
da as caracteristicas das variaveis de interesse, e depois na utilizag@o das propriedades des-
tes modelos para fazer as contas e deduzir as conseqiiéncias que nos interessam.

Por exemplo, usamos uma esfera como modelo da forma da Terra. A esfera s6 tem
um parametro, o raio 7 ; se conseguimos uma estimativa deste raio, podemos calcular quan-
tidades como a superficie S da Terra, seu volume V, sua massa (se conhecemos o volume e
a densidade média), ou a area T de sua se¢@o transversal, usando as equagdes conhecidas:

4 2 2

Um navegador no passado que usasse a esfera como modelo para a Terra consegui-
ria estimar sua posi¢cdo no mar a partir da posi¢ao das estrelas; estas pareceriam estar em
posicdes diferentes, dependendo de em qual parte da esfera o navio estivesse. A estrela
Polar, por exemplo, seria visivel se ele estivesse na parte de cima da esfera (hemisfério
Norte), e formaria um angulo de 45° com o horizonte se ele estivesse na latitude 45; seria
invisivel se ele estivesse na parte de baixo da esfera (hemisfério Sul). O navegador que
partisse de um modelo que considerasse a Terra plana ndo poderia se orientar a partir das
estrelas.

Toda conclusdo ou previsdo na ciéncia € feita a partir de modelos; contudo, ¢ im-
portante nos lembrarmos sempre de que modelos sdo abstracdes matematicas, que nao
existem no mundo real, e que os cientistas trabalham a partir da pressuposicdo de que um
tal modelo seja o melhor para um dado problema. Quanto mais proximo estiver o modelo
da realidade (no exemplo, quanto mais “esférica” for realmente a Terra), mais precisos
serdo os resultados dos célculos.

Um exemplo de problema equivalente em Estatistica poderia ser: se pesquisadores
querem estudar o peso e a altura de criangas de dois anos de idade, para determinar em que
faixas de valores se encontram a maioria das criancas saudaveis, irdo considerar que peso e
altura sao variaveis aleatorias e escolher modelos para elas. A partir destes modelos, pode-
rdo conhecer como estas variaveis se distribuem: que faixas de valores tém maior probabi-
lidade de ocorréncia, que faixas tém menor probabilidade, e quais sdo seus parametros
(mé-dia, desvio-padrdo). Esta informacédo sera ttil para fazer os graficos de crescimento
que os pediatras usam para avaliar se uma crianga esta se desenvolvendo normalmente.

(ii) Como escolher o modelo

Na maioria das variaveis aleatorias discretas que vimos (se¢do 3.3), as caracteristi-
cas do problema guiavam a escolha dos modelos. Por exemplo, se a variavel é gerada pela
repeti¢do de “tentativas” bindrias que podem resultar em sucesso ou fracasso, modelos
diferentes devem ser usados se o nimero de repeticdes for ou ndo constante, se a probabi-
lidade de sucesso a cada tentativa depender ou ndo do resultado da tentativa anterior, se o
nimero de sucessos desejados for ou ndo pré-definido, etc.

Nas VAs continuas, porém, em geral ndo s@o as caracteristicas do problema que
definem a escolha do modelo, mas sim consideracdes sobre as (provaveis) caracteristicas
da populagdo. Imaginamos como deve a distribuicao da variavel nesta populacédo, depois
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escolhemos um modelo, dentro de repertorio de modelos que estdo nos livros de Estatisti-
ca, que pareca melhor descrever aquelas caracteristicas. Para ilustrar isto, voltemos ao e-
xemplo da forma da Terra. Os primeiros astronomos que usaram a esfera para descrever a
forma da Terra escolheram entre os modelos geométricos disponiveis (Fig. 2) aqueles que
mais pareciam coerentes com a informagao de que dispunham na época (muito antes que as
naves espaciais tivessem fotografado o planeta de todos os angulos): a forma arredondado
do mar, visto do alto do mastro de um navio, a sombra circular da Terra projetada sobre a
lua, a forma circular da lua e do sol (vistas a olho nu). O modelo que pareceu mais adequa-
do, ¢ claro, foi a esfera. (A razdo porque a Terra e os outros planetas t€ém esta forma foi
explicada pela teoria da gravitagdo de Newton; mas isto s6 aconteceu varios séculos mais
tarde).

4oL @

cubo piramide esfera cone prisma cilindro

Figura 2. Modelos geométricos solidos

Suponhas agora que nos interessa estudar e modelar, por exemplo, a variavel altura
na populacdo de homens brasileiros, e queremos escolher um modelo para sua distribuigao.
Alguns modelos sdo mostrado na Fig. 3.

f(x)
1(x)

1125
G

T T T 150 X T T T T T T T
b (cm) 140 150 160 170 180 190 200

1. Modelo uniforme 2. Modelo “triangular” 3. Modelo normal

Figura 3. Trés modelos de distribui¢io de VAC

E evidente que um modelo de distribui¢do uniforme com pardmetros a=150 cm e
b= 200 cm (Fig. 3A) ndo parece muito apropriado. Primeiro, porque ele impde limites aos
valores da varidvel, e sugere que ndo existem homens com mais de 200 cm ou menos de
150 cm; contudo, sabemos por experiéncia empirica que existem homens com tais alturas,
embora sejam raros. Além disso, este modelo diz que P(190<X<200) = P(170<X<180),
por exemplo, o que também ndo ¢ confirmado por nossa experiéncia; esperamos que haja
muito mais homens na faixa 170<X<180 do que na faixa 190<X<200.

Um modelo baseado num tridngulo isosceles (Fig. 3B) definido pelas equagdes:

(x—150)/625 para 150 <x <175
f(x)=1:(200-x)/625 para 175 < x <200
0 para x <150 ou x > 200
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¢ um pouco melhor, pois mostra que homens com alturas perto da média (175 cm) s@o
mais comuns do que aqueles muito altos ou muito baixos, afastados da média; contudo,
este modelo também impde limites a variavel, e pressupde que ndo existam homens com
mais de 200 ou menos de 150 cm. Um modelo mais realista seria um que atribua maiores
probabilidades aos valores em torno da média, ndo imponha limites na altura (nem a es-
querda, nem a direita), e dé probabilidades decrescentes para intervalos que se afastem do
centro da distribui¢@o. Alturas na faixa 200-210 cm, por exemplo, ndo seria impossiveis,
mas teriam probabilidade muito pequena; o intervalo 210-220 cm teria probabilidade me-
nor ainda, etc. (Por curiosidade: o homem mais alto ja registrado foi o americano Robert
Wadlow, que chegou até aos 274 cm). O modelo que desejamos deveria ter um grafico
parecido com o da Fig. 3C; este grafico ¢ o do modelo normal, assunto deste capitulo

A analise ¢ relativamente facil neste problema porque temos experiéncia no dia-a-
dia com este tipo de variavel; sabemos quais faixas de alturas sdo razoavelmente comuns, e
quais sdo mais raras; sabemos que ha mais homens com 175 cm de altura do que homens
com 200 cm, etc. Se estamos porém interessados numa varidvel como o “nivel de bilirrubi-
na nos sangue”, provavelmente ndo temos nenhuma idéia a priori de como sera sua distri-
bui¢do (a bilirrubina é uma substancia encontrada no plasma sanguineo). Considerando que
a maior parte das varidveis biologicas t€ém distribui¢des unimodais e razoavelmente simé-
tricas, talvez possamos simplesmente pressupor que o nivel de bilirrubina tenha distribui-
cdo aproximadamente normal. Veremos depois (secdo 4.5) que esta aproximacao ¢ geral-
mente suficiente para a maior parte dos trabalhos que exigem inferéncia estatistica, especi-
almente se as amostras forem razoavelmente grandes.
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Figura 4. Amostras de trés populac¢des — variavel: altura

Para auxiliar na escolha do modelo, podemos também tirar uma amostra da popula-
¢do e nos basearmos na informacao dada pelo seu histograma. (Um exemplo disto foi visto
em relacdo ao modelo exponencial na se¢do 3.4.3). Uma amostra deve ser como uma mini-
atura da populacdo; a forma de sua distribui¢@o deve espelhar aproximadamente a forma da
distribuicdo na populacdo. Na Fig. 4 estdo os histogramas das alturas em trés amostras de
pessoas adultas. Nas trés amostras, a distribui¢do da altura ¢ unimodal e proxima da sime-
tria, e tem um formato que indica que o modelo normal pode ser apropriado para esta vari-
avel. Voltaremos a este exemplo na secdo 3.4.4.4, depois de apresentarmos as caracteristi-
cas do modelo normal.
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3.4.4.2. Caracteristicas do modelo normal
(i) Fungdo de densidade

A primeira versdo da fun¢do de densidade de probabilidade deste modelo foi publi-
cada por Gauss em 1809. A versdo mais usada atualmente inclui modificacao feitas por
Pearson e Fisher, no inicio do século XX, que resultaram nesta expressao:

_i[ﬂf
1 e 2\ o

fx)=—=—
o2z para -00<x<o0

Este modelo parece bem complicado, e realmente ¢ — todos os modelos de VAC
parecem complicados para aqueles que ndo t€ém uma boa base em Matematica (ou seja,
para a maioria dos pobres mortais como nos). Entre os modelos mais importantes de VAC,
contudo, o modelo normal é comparativamente o mais simples; modelos mais complexos
foram desenvolvidos a partir dele, como o de Student. Esta complexidade dificulta o traba-
lho de pesquisadores na Estatistica Matematica (a area da Estatistica que se ocupa com
demonstrar teoremas, derivar propriedades dos modelos, ou criar novos modelos). Para
quem usa a Estatistica como ferramenta de pesquisa, esta complexidade ndo importa muito,
ja que todos os calculos atualmente sao feitos por meio de algum programa de computador,

Para nos familiarizarmos com o modelo, vejamos algumas de suas caracteristicas
mais evidentes. Primeiro, este modelo tem a curiosidade de ter sido o primeiro a reunir
numa s6 féormula as duas constantes mais importantes da Matematica: o nimero « (= 3,14),
razao entre a circunferéncia e o didmetro de um circulo, € o nimero e (= 2,7183), base dos
logaritmos neperianos, bastante usado no Calculo.

Segundo, as outras letras gregas na formula, & (pronuncia-se mi ou mu) e o (sigma),
sdo os parametros do modelo; pode ser demonstrado que s@o iguais ao valor esperado e ao
desvio-padrao da distribuicdo, respectivamente:

E(X)=u
desvio-padrio(X) =¢ — V(X)=0"

. ’ - . . » i ’q: ‘A . 2
Para indicar que uma varidvel X tem distribui¢do normal com média p e varidncia ¢°, usa-
mos a notag¢do:

2
X = N(M,G )

‘. ~ n s 2 = -
E importante observar que nesta notacdo ¢ usada a variancia ¢~ do modelo, e ndo o desvio-
padrio ¢ (embora o desvio-padrdo seja mais importante, como veremos abaixo).

Terceiro, a varidvel X aparece no expoente dentro do parénteses, no termo:

X—p
(o2

Este termo ¢ chamado de varidvel padronizada, representado em geral pela letra z.

Uma vez que m ¢ uma constante conhecida, e que e o sdo os parametros que
iremos escolher para o modelo, também ja conhecidos, podemos substituir alguns termos
da expressdo. Chamando:

D
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O modelo fica reescrito como:
et 72
f(z)=ae™

Feitas estas substitui¢des, o modelo normal fica bastante parecido com o exponencial, com
a diferenca que variavel (no expoente) estd elevada a segunda poténcia

exponencial: J (¥)= ae”

—bz?
normal: f(Z) =ae
(ii) Pardmetros do modelo normal

Este modelo gera uma “familia” de distribuicdes, cujos graficos t€ém a mesma for-
ma: sdo distribui¢cdes unimodais e simétricas que lembram o perfil de um sino, com caudas
que se estendem assintoticamente ao infinito. O que pode variar de um modelo normal para
outro ¢ a posi¢do da curva ao longo do eixo horizontal, e a “largura” da curva (a dispersdo
da distribuic@o); estas caracteristicas sdo determinadas pelos parametros.

fx) NEL) N©OA) N o)

/
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T T T T T z T T T T T T -Z
4 2 0 2 4 3 2 -1 0 1 2 3
A. Normais de mesma variancia, diferentes médias B. Normais de mesma média, diferentes desvios-padrdes

Figura 5. Distribui¢cées normais com diferentes médias e desvios-padroes

O parametro y (chamado de pardmetro de localizagdo ou de posigdo) serve para
indicar onde estd a média da distribuicdo; se alterarmos este parametro, alteramos a locali-
zacdo da curva ao longo do eixo. A Fig. SA mostra cinco modelos normais que tém todos o
mesmo desvio-padrdo =1, mas médias variando de p=—2 a p=+2.

O parametro ¢ (chamado de pardmetro de escala) indica a dispersdo da distribui-
cdo; se alteramos este parametro, tornamos a curva mais estreita ou mais larga. A Fig. 5B
mostra quatro modelos normais que t€ém a mesma média 4=0, mas desvios-padrdes varian-
do de 0=0,25 a 6=4. Por fim, a Fig. 6 compara trés distribui¢cdes que tém p e ¢ diferentes.
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Figura 6. Distribui¢cées normais, diferentes médias e desvios-padrdes
(iii) Variavel normal padronizada

O modelo normal ¢ baseado numa fungdo exponencial (sec@o 3.4.3), modificado
por algumas constantes, e com a variavel original X sofrendo uma translagdo e um reesca-
lonamento. Transladar uma variavel significa adicionar ou subtrair uma constante a esta
variavel; no caso, subtrair a média:

X—u

A translagdo faz a valor da variavel ser deslocado ao longo do eixo. Reescalonar uma vari-
avel significa multiplicar ou dividir a variavel por uma constante; no caso, a variavel trans-
ladada ¢ dividida pelo desvio-padrio:

X—1
O

O resultado destas duas operagdes ¢ chamado de varidvel padronizada, e ¢ geralmente re-
presentado pela letra z:

X~
(o2

zZ =

Note que a variavel padronizada Z nada mais ¢ do que a distancia entre o valor da variavel
X e o centro y da curva, medida em desvios-padroes o.

T T 1 1 1 T
= 2 =1 O 1 2 2

Figura 7. Curva normal padrio
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A padronizacdo de uma variavel ndo altera a forma da distribuigcdo. A variavel
transformada Z continua tendo distribui¢do que pertence a familia das gaussianas, mas com
parametros diferentes: esta distribuicdo ¢ chamada de normal padrdo, e tem p=0 e 6=1. O
modelo normal padrao (Fig. 7) foi o que Gauss propos em sua primeira publicacdo.

Embora a curva seja teoricamente ilimitada, tanto a direita quanto a esquerda, é
possivel perceber pelo grafico que a maior parte de sua area esta entre os valores de z=2 e
z=+2 (veremos que a este intervalo corresponde uma probabilidade de 0,9545), e que prati-
camente toda ela esta entre os valores de z=3 e z=3 (probabilidade de 0,9973).

(iv) Exemplo do uso da variavel padronizada

Para ilustrar a utilidade da padronizagéo da variavel, usaremos como exemplo as
notas do SAT (Scholastic Aptitude Test), um exame de admisso para varias universidades
americanas (algo como o vestibular no Brasil). Numa prova deste tipo, o que interessa ndo
¢ saber quanto o aluno sabe daquelas matérias; o que interessa € saber se ele sabe mais ou
menos do que os outros alunos, porque todos estdo competindo pelas mesmas vagas.

Suponha que o valor da prova seja 100, e um aluno tirou nota 60. Isto ¢ um bom
resultado ou ndo, em relagdo ao resto da turma? Nao ¢ possivel saber, se ndo conhecemos a
média e o desvio-padrao da distribuicdo das notas. Se a média foi p=50, a nota do aluno
parece ter sido boa; pelo menos, foi melhor do que a média. Podemos porém dizer que esta
nota foi excelente? Isto vai depender de qual foi o desvio-padrao da distribui¢do. O grafico
da Fig. 8A mostra a distribuicdo das notas se 6=10. Neste grafico, a nota X=60 ¢ boa, mas
ndo ¢ excepcional; hd uma grande propor¢@o de alunos que tiraram notas melhores do que
esta. O grafico da Fig. 8B mostra uma distribuicdo na qual 6=3,5. Neste grafico, uma nota
de X=60 aparece como excelente; muito poucos alunos tiraram notas melhores do que esta.

- g .
—_— o - e
e T T ¢ T %]

T T

20 30 40 50 50 70 80 20 30 40 50 20 70 80
A. Distribui¢io normal, =50, 6=10 B. Distribui¢ao normal, p=50, 6=3,5

Figura 8. Distribui¢ées normais de mesma média e diferentes desvios-padroes

Nao podemos portanto comparar diretamente as notas se as distribui¢des t€m mé-
dias ou variancias diferentes; para que a comparagao seja possivel, precisamos primeiro
padronizar estas notas. O valor padronizado indica se a nota do aluno foi maior do que a
média (Z> 0) ou menor do que a média (Z< 0); indica além disso qual foi a distancia entre
a nota do aluno e a média, usando o desvio-padrdo como unidade (ou seja, quantos desvi-
os-padrdes a nota ficou acima ou abaixo da média).

Se o desvio-padrdo da distribuicdo das notas foi =10, um nota x=60 equivale a um
valor padronizado:

Xx—u  60-50
z = = = 1,00
o 10
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Se estas notas t€ém uma distribui¢do normal (e as provas do SAT sdo elaboradas de
forma que a distribui¢do das notas se aproxime o maximo de uma normal), podemos ver na
curva normal padrdo onde esta nota se localiza, em relacdo ao resto da distribuicdo. A Fig.
9A mostra a distribuicdo da variavel padronizada (Z) e da variavel original (X); a forma da
distribui¢@o ¢ a mesma, o que muda ¢ apenas a escala do eixo horizontal.

nota padronizada

nota padronizada ”
nota original

nota original.,

\.,. z Z
T T T T . T T T I I I I I F 1
-3 -2 -1 0 =l 2 3 -3 -2 1 o 1 2 3
| r e | X
I T T T T T T T I I I I I I 1 I
20 an a0 50 &0 70 an 395 43 48,5 a0 835 a7 60,5

Figura 9. Notas no SAT na varidvel original e na varidvel padronizada

A julgar pela posicao do valor padronizado no grafico, esta nota foi boa, mas nio
excepcional. Se porém o desvio-padrio foi 6=3,5, um nota x=60 equivale a um valor pa-
dronizado:

X—p _ 60-50

= 2,86
o 3,5 ’

Z =

Esta nota ¢ excelente, e o aluno parece ter distanciado muito dos outros concorrentes (Fig.
9B). Para avaliar numericamente quio boas sdo estas notas, temos que calcular as probabi-
lidades de um aluno tirar notas acima ou abaixo destes valores. (veremos este calculo na
secdo seguinte).

Na verdade, as notas do SAT sofrem ainda outra transformacéo, antes de serem
publicadas, para evitar que alunos tenham notas negativas (o que a maioria das pessoas nao
entenderia). A nota final ¢ definida como uma variavel Y:

Y =500+ 100Z

A média das notas da turma corresponde a um valor Y=500. As notas padronizadas z=1,0 e
7=2,86, do exemplo acima, corresponderiam a notas Y=600 e Y=786, respectivamente. As
notas extremas z=3 e z=+3 correspondem a Y=200 e¢ Y=800 (notas abaixo de z=3 ou
acima de z=+3 sdo arredondadas para os valores 200 e 800). Este tipo de critério foi usado
também em algumas universidades brasileiras (por exemplo, a UFJF nos anos 1980), mas
foi em geral abandonado. (Note que a nota Y ¢ uma translacdo e reescalonamento da nota
original, e também terd distribuicdo normal, com média u=500 e desvio-padrdo 6=100).

(v) Cdlculo das probabilidades usando a tabela da curva normal padrdo

Como visto na sec¢do 3.4.1.1, para calcular as probabilidades de um intervalo de
uma VAC temos que calcular a area sob a curva da fun¢@o de densidade f(x) naquele inter-
valo. Isto ¢ feito, teoricamente, por meio da integragdo da func@o no intervalo desejado. Se
queremos calcular a probabilidade de um aluno tirar nota maior que 60, na prova do exem-
plo acima, precisamos calcular:
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P(X > 60) = _[; F(x)dx

Graficamente, isto equivale a determinar a area sob a curva para notas maiores que 60,
como destacada no grafico da Fig. 10 (este grafico foi feito supondo 6=10).

f(x)

nota
T

20 30 40 50 B0 70 80

Figura 10. Nota no SAT e drea a ser calculada

A dificuldade € que a f(x) de uma distribui¢do normal ndo tem uma integral conhe-
cida; para obter seu valor ¢ preciso usar técnicas de integragdo numérica (que € o que os
computadores fazem), ou tabelas que dao estas areas de forma aproximada. Como existem
infinitas curvas normais possiveis (com diferentes parametros u € o), as tabelas sdo feitas
sempre para a distribuicdo normal padronizada (u=0, o=1); se quisermos calcular as proba-
bilidades de uma variavel X que tenha um modelo normal diferente, temos que padronizar
X e usar depois a tabela da distribuicao padrao.

Existem varias formas de tabelas para a distribui¢cdo normal padrdo. Em algumas
delas a tabela d4 a area entre o valor de z encontrado e o centro da distribuicao, isto €,
P(0<Z<z), como na Fig. 11A. Em outras, a tabela da a area abaixo deste z, P(Z<z), ou a-
cima de z, P(Z>z), como nas Figs. 11B e 11C, respectivamente.

/m /hz z
T T T T T T T T T T T T T T T T T T T T
I 1 3 3 5 5 b0 1 3 3

T T T
=3 -2 =1 0 1 2 3

P(0<Z<z) P(Z<z) P(Z>7)

Figura 11. Areas calculadas por diferentes tipos de tabelas de normal padrio

Usaremos como exemplo uma tabela como o da Fig. 11A. Uma parte desta tabela ¢
reproduzida na Tab. 1; a tabela completa estd na se¢do 3.6.3.

Dado um valor z, para calcularmos a probabilidade P(0 < Z < z) — isto &, a probabi-
lidade de a variavel Z estar entre 0 e o valor z —, procuramos o algarismo dos inteiros e da
primeira decimal de z (1,0) na primeira coluna, e em seguida o algarismo da segunda de-
cimal (0,00) na primeira linha. A célula que est4 no cruzamento entre esta linha e esta co-
luna contém a probabilidade desejada.

Voltando ao exemplo do SAT. Se o valor de Z encontrado foi igual z=1,00, a area
entre este valor e o centro da distribui¢@o (Fig. 12A) sera igual 0,3413, dada pelo cruza-
mento da coluna e da linha destacadas em vermelho na Tab. 1.

P(0 < Z <1,00)=0,3413.
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Tabela 1. Probabilidades na distribui¢do normal

z 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

0,6 | 0,2257 | 0,2291 | 0,2324 | 0,2357 | 0,2389 | 0,2422 | 0,2454 | 0,2486 | 0,2517 | 0,2549
0,7 | 0,2580 | 0,2611 | 0,2642 | 0,2673 | 0,2704 | 0,2734 | 0,2764 | 0,2794 | 0,2823 | 0,2852
0,8 | 0,2881 | 0,2910 | 0,2939 | 0,2967 | 0,2995 | 0,3023 | 0,3051 | 0,3078 | 0,3106 | 0,3133
0,9 | 0,3159 | 0,3186 | 03212 | 0,3238 | 0,3264 | 0,3289 | 0,3315 | 0,3340 | 0,3365 | 0,3389
1,0 | 0,3413 | 0,3438 | 0,3461 | 0,3485 | 0,3508 | 0,3531 | 0,3554 | 0,3577 | 0,3599 | 0,3621

2,4 | 0,4918 | 0,4920 | 0,4922 | 0,4925 | 0,4927 | 0,4929 | 0,4931 | 0,4932 | 0,4934 | 0,4936
2,5 | 0,4938 | 0,4940 | 0,4941 | 0,4943 | 0,4945 | 0,4946 | 0,4948 | 0,4949 | 0,4951 | 0,4952
2,6 | 0,4953 | 0,4955 | 0,4956 | 0,4957 | 0,4959 | 0,4960 | 0,4961 | 0,4962 | 0,4963 | 0,4964
2,7 | 0,4965 | 0,4966 | 0,4967 | 0,4968 | 0,4969 | 0,4970 | 0,4971 | 0,4972 | 0,4973 | 0,4974
2,8 | 0,4974 | 0,4975 | 0,4976 | 0,4977 | 0,4977 | 0,4978 | 0,4979 | 0,4979 | 0,4980 | 0,4981
2,9 | 0,4981 | 0,4982 | 0,4982 | 0,4983 | 0,4984 | 0,4984 | 0,4985 | 0,4985 | 0,4986 | 0,4986

Se quisermos a probabilidade de um aluno tirar uma nota melhor do que esta, ou a
proporcdo de alunos que tiraram notas melhores do que esta (representada pela area em
vermelho no grafico da Fig. 12B), teremos que considerar a metade direita da curva, e sub-
trair dela a area em azul; o resultado é:

P(Z>1,00)= 0,5-P(0 <Z<1,00)=0,5-0,3413=0,1587

Portanto, 15,87 % dos alunos tiraram notas melhores do que esta; esta nota foi boa, mas
nao foi excepcional.

Figura 12. Curva normal padrio
Se o valor de Z encontrado foi igual z=2,86, a area entre este valor e o centro da
distribuicdo ¢ dada pelo cruzamento da linha e da coluna marcadas em azul na Tab. 1.
P(0 < Z <2,86)=0,4979

A proporg¢do de alunos que tiraram notas melhores do que esta sera igual a;
P(Z>2,86)=0,5-P(0<Z<2,86)=0,5-0,4979 =0,0021

Portanto, apenas 0,21 % dos alunos (cerca de 1 em 500) conseguiu nota melhor que esta;
esta nota portanto foi excelente.
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3.4.4.3. Por que o modelo normal é importante

O modelo normal ¢ sem diivida o mais importante da Estatistica. Por que € tdo im-
portante? Basicamente, porque tem varias caracteristicas que o tornam muito flexivel, e
permitem que ele sirva como base matematica de grande parte da Inferéncia Estatistica
(isto €, do trabalho estatistico feito com amostras).

(i) Porque tem propriedades matemdticas uteis
Mencionaremos a seguir duas destas propriedades:

(1) A soma de variaveis independentes que tenham distribui¢des normais
também € uma varidvel normal.

Vimos (se¢do 3.3.1.5) que a soma de duas varidveis X; e X, independentes resulta
numa variavel Y cujo valor esperado e variancia podem ser calculados a partir dos valores
esperados e variancias de X; e Xj:

seY=X;+X; > E(Y) = E(Xl) + E(Xz)
V(Y) = V(X)) +V(X3)

Estas propriedades servem para varidveis aleatorias que tenham qualquer distribui-
cdo; observe porém que nao dizem nada sobre a forma da distribuicdo: a soma de duas va-
ridveis que tenham uma certa distribuicdo geralmente ¢ uma varidvel com distribuicdo dife-
rente. Por exemplo, suponha que langamos dois dados e somamos os nimeros. O nimero
mostrado por cada dado serd uma variavel com E(X)=3,5 e distribui¢ido uniforme; a soma
dos dois nlimeros serd uma variavel com E(X)=3,5+3,5=7, como prevé propriedade acima,
mas sua distribuicdo ndo sera uniforme (veja secdo 3.1.3).

A distribuicdo normal € a Uinica que tem esta propriedade: a soma de variaveis nor-
mais é sempre uma variavel normal. Por que esta propriedade ¢ importante? Porque pode-
mos, a partir dela, tirar conclusdes sobre a soma ou a média das varidveis numa amostra.
Por exemplo, se o peso de um homem adulto é X ~ N(u=75 kg, 6°=100), o peso de um
grupo aleatdrio de 6 homens sera normal com parametros

fy =6x75=450 kg
07 =6x100=600 — oy =~/600 = 24,49 kg

Um engenheiro que trabalha com elevadores pode a partir dai calcular, por exem-
plo, a probabilidade de um grupo de 6 homens que entram no elevador tenham um peso
total de mais de 500 kg. Além disso, podemos tirar conclusdes sobre a média da varidvel
na amostra: se a soma dos pesos dos homens na amostra ¢ normal, a média destes pesos
também sera normal (a média é a soma dividida pelo nimero de homens, o que ¢ um rees-
calonamento da soma; o reescalonamento nao altera a forma da distribuicdo). Esta proprie-
dade da média de uma amostra ¢ fundamental para a Inferéncia (veja se¢do 4.5.3).

(2) A soma de n variaveis que tenham uma mesma distribuicdo qualquer

(n@o necessariamente normal) tem uma distribui¢do que tende para a distri-
bui¢do normal, desde que n seja grande.
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Esta propriedade ¢ afirmada pelo Teorema do Limite Central, o teorema basico da
Inferéncia Estatistica (se¢do 4.5.3.1). Por causa dela, podemos tirar conclusdes a partir de
amostras e fazer testes estatisticos sobre as populagdes .

A Fig. 13 mostra amostras simuladas (n=1000) da soma dos niimeros obtidos no
lancamento de dados: na Fig. A. a soma de dois dados; na Fig. B, a soma de trés dados; na
Fig. C, a soma de 20 dados. E possivel ver que, 4 medida que aumenta o nimero de dados
(isto é, o nimero de variaveis somadas), a distribui¢do da soma se aproxima de uma nor-
mal.

150
1
005
1

sy /T

100
L
004
L

003

50
L

001

I 10 1 LA

0 3 6 7 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 50 7 80 90

A. Dois dados B. Trés dados C. Vinte dados

Figura 13. Distribui¢do simulada da soma dos nameros mostrados por 2, 3 e 20 dados

(ii) Porque serve de modelo para muitas varidaveis da natureza e da tecnologia

Por causa das propriedades acima, o modelo normal pode ser usado para descrever
a distribuic@o de uma variavel que seja afetada pela adig@o de varios fatores independentes;
se estes fatores t€ém a mesma distribuigdo, esta variavel tera distribuicdo que tende para a
normal. Varidveis assim sdo muito comuns nas ciéncias naturais e na tecnologia.

Um exemplo ¢ a altura de pessoas adultas. A altura ¢ determinada ndo apenas por
fatores genéticos (os genes recebidos do pai e da mae), mas também pela alimentagdo na
infancia, pela atividade fisica (ou falta dela), pelos acidentes ocorridos ou doencgas graves
que possam ter afetado o desenvolvimento, pelos héabitos de postura, etc. Podemos consi-
derar que cada um destes fatores ¢ uma variavel aleatoria e que a altura final de uma
pessoa ¢ resultado da soma de todos estes fatores; a altura tera portanto uma distribuicio
que tende para a normal.

Um outro exemplo ¢ o da distribui¢do dos erros que ocorrem quando uma mesma
quantidade ¢ medida véarias vezes com precisdo, como ocorre por exemplo na Fisica. A
primeira publicacdo do modelo normal, alias, foi feita por Gauss em 1809 numa artigo so-
bre os erros em observagdes astronomicas. Gauss tinha analisado medi¢des da posi¢do do
asteroide Ceres feitas por diversos observatorios europeus, e verificou que todas tinham
erros e discordavam entre si. Estes erros podem ser devidos a vérios fatores, como condi-
cdes atmosféricas, qualidade do equipamento usado, caracteristicas dos observadores, etc.
Gauss considerou que a média aritmética das diversas medi¢des deveria ser a melhor esti-
mativa da posicao real do asteroide, e notou que estas medicdes se distribuiam em torno da
média de acordo com um grafico que tinha o perfil de um sino. Usando as médias como
estimativas das posi¢des do asteroide no passado, foi capaz de prever sua posi¢do alguns
meses no futuro, previsdo que foi confirmada pelas observagdes dos astronomos.
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Ha um grande numero de variaveis encontradas nas ciéncias que tém distribui¢des
razoavelmente parecidas com a do modelo normal: distribui¢des unimodais, mais ou me-
nos simétricas, com os intervalos mais provaveis ocorrendo perto da média. A Fig. 14 mos-
tra trés exemplos: (A) Variagdo anual do nivel do Rio Negro, em Manaus; (B) Temperatura
média anual na cidade de New Haven; (C) Medidas da velocidade da luz feitas por Michel-
son e Morley, em 1882.
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A. Variac;i;) anual d;) nivel ‘ B. Temperatura média anual C. Medidas da velocidade
do rio Negro, em Manaus em New Haven, EUA (°F) da luz feitas em 1882.

Figura 14. Exemplos de distribuicdes aproximadamente simétricas e unimodais

Distribui¢des com formas similares a estas sdo encontradas com tanta freqiiéncia
que no inicio do século XIX os estatisticos comegaram a pensar que esta deveria ser a for-
ma “normal” de uma distribuic¢do (dai o nome do modelo). Contudo, a medida em que au-
mentaram os recursos para a coleta e analise de dados esta idéia foi sendo abandonada (nos
tempos de Gauss todas as contas e graficos eram feitos a mao — para fazer os graficos da
Fig. 14, por exemplo seria preciso organizar manualmente os dados em tabelas de distri-
bui¢des de freqiiéncia, depois desenhar os graficos em papel — um processo que levaria
horas, ou dias). Os estatisticos comegaram a descobrir novas varidveis para as quais 0 mo-
delo normal ndo servia.

Na verdade, ¢ bom ter sempre em mente que nenhuma variavel é normal — a distri-
bui¢do normal ¢ um modelo tedrico, como os modelos da Geometria. Se formos a uma
ambiente natural (uma floresta, por exemplo) ndo encontremos ali nenhum objeto que te-
nha formas iguais as dos modelos geométricos — nada que seja exatamente na forma de
uma esfera, ou cone, ou mesmo de uma simples linha reta. Do mesmo modo, nenhuma
variavel real tem distribui¢do exatamente normal (ou exponencial, ou de Poisson, etc.).
Modelos sdo construgdes tedricas que servem como descri¢des aproximadas da realidade;
construcdes extremamente Uteis, porque a partir delas as ciéncias podem tirar muitas con-
clusdes importantes.

(iii) Porque serve de aproximagdo para outros modelos

Além de servir para descrever muitas variaveis encontradas nas ciéncias € na tecno-
logia, 0 modelo normal também ¢ uma importante ferramenta para a aproximagao de mo-
delos de variaveis discretas, especialmente o binomial e o de Poisson, quando as amostras
sdo grandes. A aproximac¢do do modelo binomial pelo normal, alis, ¢ a base dos testes de
proporgoes (secdo 4.4). Veremos mais abaixo como estas aproximacodes sdo feitas (secdo
3.4.4.5).
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(iv) Porque estd na base de vdrias técnicas estatisticas importantes

Virias técnicas estatisticas muito usadas sdo baseadas nas propriedades do modelo
normal. Por exemplo, tanto os testes estatisticos de médias com amostras pequenas usando
a distribui¢do de Student, quanto os testes comparativos de varias médias feitos pela Andli-
se de Varidncia, partem do pressuposto de que a distribui¢@o das variaveis seja normal.
Além disso, hé varias outras técnicas que se baseiam no pressuposto de que os erros de um
modelo tenham distribui¢ao normal; por exemplo, os modelos de regressao linear ou os
modelos ARIMA para séries temporais. Por causa desta ampla gama de utiliza¢des, o mo-
delo normal ainda ¢ a base de grande parte das aplicagdes da Estatistica, mesmo que mode-
los mais especificos e mais complexos tenham sido desenvolvidos depois dele.
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3.4.4.4. Selecao e ajuste de um modelo normal

Se estamos interessados em estudar as caracteristicas de uma variavel aleatoria, ou
calcular as probabilidades associadas a seus valores, precisamos de ajustar um modelo a
distribui¢@o desta variavel. Este problema — a modelagem de uma variavel — ¢ muito im-
portante na Estatistica e serd abordado na se¢@o 5.6. Por enquanto, faremos aqui uma breve
introdug@o ao assunto usando o modelo normal como exemplo, ja que ele ¢ o mais usado
na pratica.

Encontrar o modelo para uma variavel implica em resolver dois problemas:

- escolher qual a familia de modelos que possivelmente dara a melhor descricdo da variavel
(esta etapa ¢ em geral chamada de identificagdo do modelo)

- encontrar, dentro da familia escolhida, qual o modelo particular que descreve a populacdo
com menor erro; isto €, encontrar os parametros que definem este modelo (esta etapa ¢é
chamada de ajuste do modelo).

Discutirmos abaixo estes dois problemas.

(i) Como identificar o modelo : histogramas e grdfico de quantis

A escolha de um modelo em qualquer ciéncia pode ser ditada por consideracdes
teoricas deduzidas de conhecimento prévio, ou ser feita com base na observacido empirica.
Kepler, depois de experimentar com circulos e outras curvas, concluiu que o melhor mode-
lo para a 6rbita dos planetas seria uma elipse, pois foi o modelo que se ajustou aos dados
observados com menor erro. Newton, por outro lado, deduziu matematicamente que as
trajetorias teriam que ser elipses, a partir de sua teoria da Gravitagao.

Na Estatistica, ha situagdes em que o modelo ¢ ditado por consideracdes tedricas.
Quando fazemos Inferéncia com amostras pequenas (por exemplo, na estimacao da média
de uma populagdo), sabemos que deve ser usado o modelo de Student, deduzido matemati-
camente a partir de alguns pressupostos. Na Analise de Variancia, sabemos que devemos
usar o modelo de Snedecor (F). Nestes dois casos, portanto, a escolha do modelo foi feita
teoricamente. Contudo, tanto o modelo de Student quanto o de Snedecor partem de um
mesmo pressuposto: o que a da distribuicdo da variavel na populagao seja normal. Como
podemos saber que o modelo normal ¢ adequado para aquela variavel?

As vezes, o modelo pode ser sugerido por consideragdes tedricas. No Se¢do 3.4.4.1,
por exemplo, dissemos que o modelo normal provavelmente seria uma escolha razoavel
para a variavel “altura de homens adultos”, porque a altura de uma pessoa ¢ afetada por
uma grande quantidade de fatores independentes, e o modelo normal em geral ¢ bom para
este tipo de problema. Esta ¢ contudo apenas uma suposi¢do (ndo sabemos realmente quais
fatores estdo influenciando a altura das pessoas em uma populacdo), e teremos que confir-
ma-la empiricamente, por meio de analises de amostras tiradas da populacao.

A primeira coisa a verificar ¢ a forma do histograma da varidvel na amostra; este
histograma deve dar uma indicacdo da forma do modelo adequado para a populacdo. Se a
distribuicdo da variavel na populagdo é coerente com o modelo normal, unimodal e simé-
trico, iremos esperar que o histograma também seja razoavelmente unimodal e simétrico.
Usando o R, podemos sobrepor uma curva normal sobre o histograma, para facilitar a veri-
ficagdo visual, como na Fig. 15.
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Figura 15. Histogramas de trés amostras, com as curvas normais sobrepostas

Nas trés amostras, o modelo normal parece se ajustar bem aos dados do histograma.

E importante enfatizar aqui. porém, que ndo estamos tentando modelar a amostra, e sim a
populagdo que esta amostra representa (esta ¢ uma confusdo que muitos alunos fazem). A
amostra ¢ conhecida, ndo precisa de modelos; a populacdo ¢ desconhecida, ou conhecida
apenas parcialmente, e precisamos de modelos como ferramenta que nos permita fazer as
contas e calcular as probabilidades. Um histograma representa a distribui¢@o de freqiién-
cias (absolutas ou relativas) observadas numa amostra. Estas frequéncias relativas sio es-
timativas das probabilidades; o histograma nos dé4 portanto estimativas da distribuicdo de
probabilidades que existe na populacdo; quanto maior a amostra, melhores serdo estas es-
timativas.
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Figura 16. Exemplos de varidveis para as quais o0 modelo normal niio parece adequado

A Fig. 16 mostra exemplos de amostras de duas variaveis para as quais o modelo
normal obviamente ndo parece adequado: (A) peso de 280 mulheres americanas entre 20 e
40 anos de idade, antes de engravidarem; (B) Tempo de duragdo de gestacdo destas mulhe-
res. Estas amostras tém distribui¢des evidentemente assimétricas, o que nido ¢ coerente com
o modelo normal.

Outra verificacdo que pode ser obtida por meio de graficos ¢ a fornecida pelos grd-
ficos de quantis (quantile plots). Estes graficos permitem que a distribuicdo observada nu-
ma amostra seja comparada visualmente com a de um modelo tedrico qualquer; a fungao
gagnorm do R compara a distribuicdo empirica na amostra com a distribuigdo tedrica de um
modelo normal.

Nestes graficos, cada observacdo encontrada na amostra € representada pelos seus
quantis: no eixo vertical, o seu percentil na distribuicdo empirica da amostra; no eixo hori-
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zontal, o percentil que ela ocuparia na distribuigdo normal. Se estas duas distribui¢cdes
coincidirem, ao pontos que representam as observagdes estardo distribuidos ao longo de
uma linha reta com angulo de 45° (y=x) no grafico. A Fig. 17A mostra o grafico de quantis
da distribui¢do de alturas cujo histograma esta na Fig. 15A, e indica que o modelo normal
descreve bem o que foi encontrado na amostra, confirmando o que vimos no histograma.
As Figs. 17B e 17C (peso de mulheres e duragdo de gestagdo) mostram os graficos de
quantis de variaveis para as quais o modelo normal néo serve, confirmando a impressao
obtida através dos histogramas da Fig. 16.
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Figura 17. Trés exemplos de grafico de quantis

Outras verificagdes podem ser baseadas nas medidas obtidas nas amostras: o coefi-
ciente de assimetria deve ser proximo de zero (indicando distribui¢do simétrica) e o de cur-
tose proximo de 3 (ver sec¢do 2.2.3). Por fim, ha varios testes de normalidade — testes esta-
tisticos que verificam qual a probabilidade de uma dada amostra ter vindo de uma popula-
cdo normal; este ¢ um problema freqiiente, se queremos usar testes de hipotese com amos-
tras pequenas (testes t), modelos de Regressao Linear ou fazer Analise de Variancia, etc.
Na se¢@o 5.6 veremos estes testes com mais detalhes.

(ii) Ajuste do modelo

Depois de escolhida a familia de modelos a ser usada, € preciso encontrar, dentro
desta familia, aquele modelo particular que melhor pode representar a populagido. No caso
do modelo normal, isto significa encontrar os valores dos parametros x4 € o que definem o
modelo. Exemplos disto sdo os graficos na Fig. 15: foram usados modelos normais, mas
em cada um deles os parametros (e mesmo as unidades de medida no eixo horizontal) sdo
diferentes.

Este procedimento ¢ chamado de ajuste do modelo. Ha varios métodos para isto, e
0 mais comum ¢ o que foi criado por Gauss, o método dos minimos quadrados ordinarios,
MQO (minimum square error, MSE); alias, foi para justificar matematicamente este méto-
do que Gauss criou o modelo normal.

O método MQO procura encontrar os valores de x € o que levem ao menor erro
quadratico. “Erro” € a diferenga entre o que o modelo preve e o que foi encontrado numa
amostra; no modelo para o peso dos alunos, por exemplo, a diferenga entre o nimero de
alunos que deveriam ser encontrados em cada faixa de peso, de acordo com o modelo, € o
nimero que realmente foi encontrado na amostra. O método procura identificar os pardme-
tros dtimos do modelo, que sdo aqueles que levem ao menor total dos quadrados destes
erros, somados para todas as faixas de peso (a razao de usarmos o quadrado dos erros € a
mesma ja explicada na secdo sobre a varidncia, 2.2.2.4). No caso do modelo normal, o
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procedimento € simples, pois pode ser demonstrado que os pardmetros 6timos sdo iguais a
média aritmética e ao desvio-padrdo da amostra.

(iii) Consideragoes finais

Estes topicos — identificag@o e ajuste de modelos — ¢ extremamente importante, e
voltaremos a falar dele mais adiante. A maioria das técnicas de Inferéncia Paramétrica
comecam por identificar e ajustar um modelo para a variavel que queremos estudar, e de-
pois utilizar as propriedades deste modelo. Isto sera visto a partir do Capitulo 4; por en-
quanto, héa algumas observagdes importantes que devem ser feitas aqui.

Primeiro, o erro (entre modelo e amostra) sempre vai existir, € em cada amostra ele
sera diferente (se vocé langar uma moeda 10 vezes ndo vai encontrar sempre 5 caras € 5
coroas). O melhor modelo ¢ aquele que minimiza o erro (isto ¢, reduz o erro até o minimo
possivel), mas nenhum modelo vai fazer o erro desaparecer.

Segundo, o erro sempre vai existir, mas até que ponto ele ¢ aceitavel? Se ele for
grande demais, isto pode significar simplesmente que o modelo ndo serve, ndo descreve
bem o que acontece na populag@o. Veremos depois os testes de normalidade, testes estatis-
ticos que procuram avaliar qual é a probabilidade de uma amostra ter sido produzida por
um modelo normal; se esta probabilidade for pequena demais, isto quer dizer que o modelo
normal ndo serve para esta variavel.

Terceiro: ¢ comum dizermos que “a populagdo (ou a varidvel) é normal” ou a “po-
pulagdo (ou a variavel) segue a distribui¢cdo normal”; por exemplo, em enunciados de exer-
cicios que comegam dizendo “Numa populagdo, a altura dos homens segue um modelo
normal, com média 173 cm e desvio-padrdo 10 cm. Qual ¢ a probabilidade, etc.”. Esta
maneira de dizer ndo € rigorosamente correta. A populacdo ndo tem que “seguir” o mode-
lo; 0o modelo é que tem que se seguir a populagdo, isto ¢, deve dar resultados que se apro-
ximem o mais possivel do que existe na populacdo. Isto é apenas uma maneira simplificada
e um tanto inexata de dizer que a variavel que nos interessa tem uma distribui¢cdo de pro-
babilidades para a qual o modelo normal teoérico fornece uma boa descrig@o.
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3.4.4.5. Uso do modelo normal como aproximacio de outras distribuicdes
(i) Aproximacdo da distribuig¢do binomial

Vimos na Secdo 3.3.5 que o modelo binomial pode ser usado para calcular as pro-
babilidades associadas a cada valor de X, em problemas nos quais a variavel de interesse ¢
o numero de sucessos obtidos em 7 repeticdes de um experimento de resultados binarios. A
probabilidade de obtermos 7 ou mais caras em 10 lancamentos de uma moeda, por exem-
plo, pode ser calculada pelo somatorio:

P(X>7)=P(X=7) + P(X=8) + P(X=9) + P(X=10)

onde cada um do termos no membro direito da equacdo pode ser calculado pelo modelo
binomial com parametros n=10 e p=0,5, da forma :

_ 7 7 (10=7)
px=7)= PN =C1ox0,5" X057 _ ¢ 1179

P(X=8) = p(8) = Ciyx0,5° x 0,519 = 00439, etc.

Este tipo de problema ocorre porém com freqiiéncia em aplica¢des nas quais o nl-
mero n de repetigdes € muito grande; por exemplo, problemas como:

a) Um fabricante afirma que dentre os parafusos que fabrica apenas 3% tém algum ti-
po de defeito. Se isto for verdade, qual ¢ a probabilidade de que num lote de 100
destes parafusos, escolhidos aleatoriamente, sejam encontrados 7 ou mais defeituo-
sos?

b) Um modelo genético criado por Mendel prediz que, entre os descendentes produzi-
dos no cruzamento de ervilhas, ¥4 dos ervilhas produzidas sejam de cor verde, e %
sejam de cor amarela. Se esta previsdo for verdade, qual é a probabilidade de que,
entre 500 cruzamentos, sejam encontrados mais de 135 descendentes de cor verde?

¢) Um partido politico afirma que seu candidato conta com os votos de 60% dos elei-
tores. Se isto for verdade, qual ¢ a probabilidade de que, numa amostra de 1000
destes eleitores, selecionados aleatoriamente, menos da metade deles afirme que vai
votar neste candidato?

Estes problemas sdo exatamente iguais ao do langamento das moedas, em termos
conceituais, mas usam amostras muito maiores (n=100, 500 e 1000, respectivamente), o
que dificulta os calculos (porque o calculo dos fatoriais de nimeros grandes é impossivel, e
¢ preciso usar aproximagdes). Pode ser demonstrado que a distribui¢cdo normal d4 uma boa
aproximacao dos resultados, se n for grande e o valor de p ndo muito pequeno. O modelo
binomial tem valor esperado e variancia dados pelas expressdes:

E(X)=np

V(X)=np(1-p)

Este modelo binomial podera ser entdo aproximado por uma normal que tenha a mesma
média e a mesma variancia, isto €, que tenha:

E(X)=u=np
V(X)=0" =np(1—p) =& =/np(1-p)

No problema (c), por exemplo, o que nos interessa calcular é
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P(X<500)

Usando uma distribui¢cdo normal de parametros:
L1 =np=1000x0,6 =600

o =4/np(1-p) =22,36

Padronizado o valor de X desejado:
X —pu  500-600
o 2236

7 =

= —4,47

A probabilidade de um valor de Z menor ou igual a este ¢ muito pequena:
P(Z <—-4,47)=0,0000

O grafico da Fig. 18 mostra a posi¢@o do valor de z encontrado na curva normal padréo. o
que reforca a conclusdo de que este ¢ um valor de ocorréncia extremamente improvavel.

T I T T T T T 1
4 3 2 4 0 1 2 3

Figura 18. Posicio do valor encontrado de z na curva normal padrio

Um raciocinio deste tipo de problema ¢ a base dos testes de hipotese, que veremos a
partir da sec@o 4.4. Neste exemplo, a afirmacdo do partido de que a porcentagem de eleito-
res favoraveis € de 60% (isto €, p=0,6) ¢ considerada como uma hipdtese, e o resultado
encontrado na amostra ¢ usado para testar esta hipdtese. No exemplo, o modelo diz que se
a hipodtese for verdadeira, ¢ praticamente impossivel encontrar uma amostra onde menos da
metade dos eleitores sejam favoraveis ao candidato. Se isto ocorreu na amostra que retira-
mos, chegaremos a conclusdo de que a afirmagéo do partido provavelmente ¢ falsa. As
conclusdes de um teste de hipotese nunca serdo definitivas, porém, mas sempre baseadas
em probabilidades; iremos mais tarde calcular as probabilidades de estas conclusdes esta-
rem certas, e de estarem erradas.

Esta aproximacdo da binomial a normal, a medida que o numero n de repeti¢des
aumenta, pode ser demonstrada analiticamente. Esta demonstracdo nio sera feita aqui; em
vez disto, mostramos nas Figs. 19 e 20 como o histograma das binomiais claramente tende
para a forma de um modelo normal quando » aumenta, ndo apenas quando a binomial é
simétrica (p=0,5), mas também quando ela ¢ assimétrica (p#0,5).
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B(5,1/2) B(10,1/2) B(50,1/2) Normal

Figura 19. Distribui¢des binomiais de p=0,5 para diferentes nimeros » de repeticoes

I H L A

B(5,1/5) B(10,1/5) B(50,1/5) Normal

Figura 20. Distribui¢des binomiais de p=0,2 para diferentes nimeros #» de repeticoes

Exemplo

Suponha que um aluno dé palpites aleatorios em todas as 100 questdes de uma pro-
va de concurso (questdes de multipla escolha, com cinco alternativas cada). Qual € a pro-
babilidade de que este aluno acerte mais de 30 questdes ?

O que nos interessa calcular ¢ P(X>30). Se usdssemos um modelo binomial, ele
teria como parametros:

n=100 (niimero de questdes da prova)
p=1/5=0,2 (probabilidade de acerto em cada questao)

donde o valor esperado e a variancia do numero de acertos seriam dados por:
E(X)=np=100x0,2=20 V(X)=np(1-p)=16

Usando uma distribui¢do normal cujos parametros sejam o valor esperado e o desvio-
padrio da binomial:

u=E(X)=20 o=4V(X)=4

Padronizando o valor de X desejado:
X—-pu 30-20
o 4

7=

=2,50

A probabilidade de um valor de Z maior ou igual a este ¢ (consulte a tabela na se¢do 3.6.3):
P(Z>2,50)=0,5-0,4938 = 0,0062

https://projetosigma.org (3. Probabilidades — H.S.Hippert) 22



projetoX.sigma

Note que, se a prova tivesse 10 questdes, a probabilidade de um aluno ter a mesma
proporcdo de acertos (>30%) seria igual a P(X>3) = 0,3222. Quanto mais questdes tem a
prova, portanto, mais dificil fica conseguir uma grande propor¢do de acertos dando apenas
palpites aleatorios. (Por isso, provas de multipla escolha geralmente t€ém grande nimero de
questdes, para garantir que a nota nao tenha sido conseguida apenas por meio de palpites
aleatorios...)

(ii) Aproximagdo da distribui¢cdo de Poisson

O modelo normal também pode ser usado como aproximagao da distribui¢do de
Poisson, quando a média desta ¢ razoavelmente grande. Os graficos da Fig. 21 mostram as
fungdes de probabilidade de trés modelos de Poisson. E possivel ver que a distribuicdo ja
se torna praticamente simétrica quando A=10, e que sua forma parece se aproximar de uma
normal.

A aproximacdo do modelo de Poisson pela normal contudo ¢ bem menos usada na
pratica do que a aproximagao da binomial, porque o modelo de Poisson tipicamente ¢ usa-
do para modelar distribuicdes de eventos raros, com nimeros médios de ocorréncias muito
pequenos.
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21. Distribui¢cdes de Poisson para diferentes A
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