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3.4. Variaveis aleatorias continuas
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3.4.1. Introducao

No capitulo passado, vimos alguns modelos para variaveis aleatorias discretas. Es-
tas varidveis geralmente resultam de contagens de ocorréncias de algum evento: por exem-
plo, do numero de sucessos em n repeti¢des de um experimento, de mulheres numa turma
de estudantes, de ovos nos ninhos de uma espécie de ave, de vezes que um interruptor elé-
trico pode ligar e desligar antes de quebrar, de carros parados num sinal de transito. Estes
valores podem ser enumerados — isto €, podem ser contados e organizados numa lista. Nao
¢ necessario que esta lista seja finita. Por exemplo, a variavel “niimero de tentativas neces-
sarias até que seja obtida uma cara, numa seqiiéncia de lancamentos de uma moeda” ¢ uma
VA discreta que ndo tem limite superior, pois ndo um ha nimero méaximo de tentativas
possiveis; o que ¢ importa € que estes valores sejam enumeraveis, € que possamos calcular
a probabilidade de ocorréncia de cada um dos valores possiveis por meio de um modelo
probabilistico (no exemplo, o modelo geométrico, se¢ao 3.3.4).

Veremos agora as varidveis aleatorias continuas. Estas varidveis geralmente pro-
vém de medi¢oes, cujos resultados sdo representados por numeros reais: por exemplo, o
peso ou a altura de uma mulher sorteada de uma populacio conhecida, a distancia que um
carro pode percorrer com um litro de gasolina, o tempo de funcionamento de um aparelho
antes que sua bateria se esgote. Peso, altura, distancia, tempo, sdo variaveis continuas, cu-
jos valores possiveis ndo podem ser enumerados; ndo podemos, por exemplo, fazer uma
lista dos pesos ou alturas possiveis de uma pessoa, pois entre dois valores quaisquer sem-
pre ha infinitos outros, ja que qualquer intervalo continuo pode ser subdividido infinita-
mente.

E claro que a distingdo entre variaveis discretas e continuas é tedrica; na pratica,
medigdes ndo podem ser feitas com precisdo infinita, e os resultados sdo sempre arredon-
dados e se tornam valores discretos. Primeiro, porque nenhum aparelho de medi¢do tem
precisdo infinita. Segundo, porque medi¢des extremamente precisas, mesmo que possiveis,
em geral ndo sdo necessarias, ou nio sdo uteis. O peso de uma pessoa adulta, por exemplo,
geralmente ¢ dado em quilogramas (as vezes em centenas de gramas), e a altura em centi-
metros. Nao faz sentido medir o peso em gramas, ou a altura em milimetros, ja que quais-
quer medidas de uma pessoa — mesmo o peso € a altura —, variam ao longo do dia. Por ou-
tro lado, ha variaveis que sdo fundamentalmente discretas, mas que ¢ mais pratico tratar
como continuas; veremos isto com mais detalhes abaixo, na sec¢do 3.4.1.5.
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3.4.1.1. Exemplo de um modelo para VAC

Nos modelos para VADs, usamos a fungdo de probabilidades p(x) para calcular a
probabilidade de ocorréncia de um valor determinado de X:

p(x) = P(X=x)

Como exemplo disto, usamos na sec¢do 3.3.1.3 uma roleta comum (Fig. 1A). Os resultados
possiveis de cada rodada sdo os numero inteiros de 0 a 36, e a func@o de probabilidades ¢
pix) =P(X=x) = 1/37 para qualquer x

Esta funcdo pode ser representada por um grafico de barras, como na Fig. 1B; a variavel X
¢ representada no eixo horizontal, a fungdo de probabilidades no eixo vertical. Este ¢ um
exemplo de modelo de distribui¢@o uniforme para uma VAD.

0 5 10 15 20 25 30 35
A B
Figura 1. Distribuicio de probabilidades em uma roleta

Nos modelos de VAC, como ndo ¢ possivel enumerar todos os valores possiveis de
uma variavel continua, ndo tem sentido calcular a probabilidade de cada valor. Em vez dis-
to, iremos calcular as probabilidades de que a varidvel X assuma valores dentro de interva-
los determinados.

Por exemplo, suponhamos uma roleta como na Fig. 2A, da qual tenhamos retirado
as barrinhas de metal que separam as casas numeradas onde a bola pode cair (estas barri-
nhas sdo como os trastes no brago de um violdo). A bola (em vermelho, na figura) pode
agora parar sobre qualquer dos infinitos pontos da circunferéncia da roleta. A posi¢do da
bola sera definida pelo angulo a entre o ponto sobre o qual ela parou e o eixo horizontal.
Nao faz sentido perguntar qual é a probabilidade de ela parar exatamente em cima de um
ponto determinado; em vez disto, iremos calcular a probabilidade de a bola cair dentre de
um intervalo desejado; por exemplo, no setor entre os angulos de 45° e 90°.

Para representar as probabilidades dos intervalos, usaremos um conceito que ja foi
aplicado aos histogramas (Secdo 2.1.5): nos histogramas, a freqiiéncia de cada classe ¢ da-
da pela drea do retangulo que representa a classe, e ndo pela altura do retangulo. Nos mo-
delos de VACs, usaremos também graficos nos quais a probabilidade de cada intervalo sera
representada pela drea sob uma curva limitada por aquele intervalo, e ndo pelo eixo verti-

N}

https://projetosigma.org (3. Probabilidades — H.S.Hippert)



projetoX.sigma

cal. Para uma o modelo uniforme de distribui¢do, o grafico ¢ simplesmente um retangulo
como o da Fig. 2B. Veremos mais detalhes destes graficos na préxima secéo.
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Figura 2. Exemplo de variavel aleatéria continua

3.4.1.2. Funcao de densidade de probabilidade

O modelo para uma VAC sera portanto uma funcéo a partir da qual poderemos cal-
cular a probabilidade de qualquer intervalo da variavel; esta probabilidade sera dada pela
area do grafico delimitada pelo intervalo.

Nos histogramas, a variavel do eixo vertical ¢ chamada densidade de fregiiéncia.
Da mesma forma, no grafico da distribuicio de probabilidades na Fig. 2B, a variavel do
eixo vertical sera chamada de densidade de probabilidade; nao da diretamente as probabi-
lidades, mas mostra como a probabilidade total, igual a 1, est4 distribuida ao longo do eixo
X. Neste exemplo, a densidade ¢ constante, o que quer dizer que a probabilidade se distri-
bui uniformemente, e intervalos com a mesma base terdo a mesma probabilidade, qualquer
que seja a sua posi¢ao ao longo do eixo X (este ¢ o modelo mais simples possivel para uma
VAC,; veja secdo 3.4.2).

A funcdo que gera este grafico ¢ chamada de funcgdo de densidade de probabilida-
des (f.d.p.), e ¢ normalmente representada por f{x). Esta fun¢@o tem como caracteristicas :

(1) sempre assume valores positivos (ja que ndo existem probabilidades negativas)

f(x)=>0 para todo x
(i1) a area total sob a curva que representa f(x) ¢ igual a 1

[ fedax=1

(ii1) a probabilidade de X estar num intervalo entre os valores a e b serd dada pela
integrac@o da fung@o no intervalo (a,b); ou, em termos geométricos, pela area sob o
grafico da funcido f(x) limitada pelos valores X=a e X=b.

b
Pla< X <b) = j £(x)dx

Duas observagdes importantes que devem ser feitas aqui. Primeiro: Quando traba-
lhamos com VAs discretas, as probabilidade P(X>x) e P(X>x) tém valores diferentes. Por
exemplo, se X € o nimero obtido no langamento de um dado
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P(X>4) =p(5) + p(6) =2/6
P(X>4) =p(4) +p(5) + p(6) =3/6

Quando trabalhamos com VAs continuas, porém, esta distin¢do perde o sentido.
Uma vez que uma VAC pode assumir infinitos valores, a probabilidade de qualquer valor x
em particular € nula; por isso, tanto faz incluir x no intervalo, P(X>x), ou ndo incluir,
P(X>x), que o resultado ¢ o mesmo. A expressdo em (iii) por isso as vezes se encontra em
livros como

b
Pla< X <b)= j £(x)dx

o0 que nio faz diferenca.

Segundo: Se vocé ndo sabe Célculo, ndo se preocupe. Na maioria dos modelos de
VACs (com excecdo dos modelo Uniformes e Exponencial, que serdo vistos a seguir), as
f.d.p.s t€ém expressdes muito complicadas, que ndo podem ser integradas analiticamente, e
as areas tém que ser calculadas por meio de técnicas de integracdo numérica (ou seja, num
computador). Tradicionalmente, os estatisticos usavam tabelas com valores aproximados
(estas tabelas sdo sempre encontradas como apéndices no final dos livros de Estatistica);
atualmente, também ¢ possivel usar programas estatisticos para fazer estes calculos. Neste
site, mostraremos como usar estes dois métodos.

3.4.1.3. Funcao de distribuicao

Outra funcdo importante, derivada da fun¢ao de densidade, ¢ a fungdo de distribui-
¢do ou fungdo acumulada de probabilidade, definida como:

F(x)=P(X <x) = j_ f(0)dt

Esta funcdo é muito usada para calcular probabilidades a partir de um modelo de VAC (por
exemplo, o modelo normal na se¢do 3.4.4.2); além disso, ela é fundamental nos estudos
tedricos, pois muitas das demonstragdes das propriedades dos modelos, e derivagdes de
novos modelos, sdo feitas usando esta funcdo, ao invés da fun¢do de densidade (estes estu-
dos porém estdo fora do escopo deste site).
3.4.1.4. Valor esperado e variancia de uma VAC
(1) Valor esperado
O valor esperado de uma VAC ¢ definido por:
00
E(X)= I xf (x)dx
—00

Esta expressdo ¢ equivalente aquela que da o valor esperado de uma VAD (segdo 3.3.1.3):
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E(0 =Y xp(x)

A diferenga € que aqui o somatorio discreto foi substituido por seu equivalente con-
tinuo, que ¢ a integral.

(ii) Varidncia
O variancia de uma VAC ¢ definido por:

V)= [ (= EQO) £

Esta expressdo também ¢ equivalente a usada em VADs (se¢do 3.3.1.4):
5 3
V) =3 (%~ EX)) p(x)
i=1
Aqui também o somatodrio discreto foi substituido pela integral.

(iii) Variancia como medida de risco

Na andlise financeira, o reforno (o valor que o investidor ganha, por fazer o inves-
timento) pode ser tratado como uma variavel aleatdria continua, e sua variancia ¢ freqiien-
temente usada como base nas medidas de risco do investimento. Se os retornos de dois in-
vestimentos tém médias iguais mas varidncias diferentes, o investimento de maior varian-
cia € considerado o mais arriscado. Por exemplo, suponha que dois investimentos tenham
tido retornos anuais médios de 5% nos ultimos anos. Num deles a variancia € baixa, € o
retorno tem variado geralmente entre 4% e 6%; no outro, a variancia ¢ alta, € o retorno tem
variado entre -10% a +20%. Este segundo investimento ¢ considerado mais arriscado (o
investidor pode até perder dinheiro em alguns anos), embora em média ambos tenham o
mesmo rendimento.

(iv) Propriedades do valor esperado e da varidncia

O valor esperado e da variancia de uma VAC tém as mesmas propriedades daqueles
das VADs (secdo 3.3.1.5). Veremos exemplos da utiliza¢do do valor esperado, da varidncia
e de suas propriedades nas se¢des seguintes, que estudam os modelos principais de VAC.

3.4.1.5. De VAC para VAD, e vice-versa

Na teoria, a disting@o entre VACs e VADs ¢ bem clara. Nas aplicagdes praticas, po-
rém, freqlientemente acontece de usarmos modelos de VACs para varidveis que na verdade
sdo discretas, ou modelos de VAD para variaveis continuas.

Para ilustrar isto, suponhamos um experimento simples, relacionado as roletas das
Figs. 1 e 2: deixamos o ponteiro de um relégio de quartzo girar até que acabe a bateria, e
anotamos a posic@o onde parou o ponteiro dos minutos (Fig. 3A).

Nestes relogios ha um circuito eletronico, controlado pelas oscilagdes de um cristal
de quartzo, que emite um pulso elétrico a cada segundo; este pulso move simultaneamente
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os trés ponteiros (*). O ponteiro dos segundos d4 uma volta completa em torno do mostra-
dor a cada minuto, e para portanto em 60 posi¢des diferentes. O ponteiro dos minutos da
uma volta a cada 60 min = 3600 segundos, e para em 3600 posi¢des diferentes. Se quere-
mos fazer um modelo probabilistico para a posi¢do deste ponteiro, portanto, deveriamos a
rigor usar um diagrama de barras como o da Fig. 1B, mas com 3600 barras. Numa aplica-
¢do real, porém, provavelmente optariamos por usar um modelo de VAC uniforme, como o
da Fig. 3B, e trabalhariamos ndo com a probabilidade de o ponteiro parar sobre um ponto

dado, mas sim, a probabilidade de ele parar dentro de um intervalo.
)
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Figura 3. Exemplo de varidvel aleatéria: posiciio do ponteiro de um relogio

A probabilidade de ele parar entre as marcas de 10 e 11 horas, por exemplo, serd igual a
area do retdngulo em amarelo na figura, dada pelo produto de sua base por sua altura :
P(10< X<11)=(11-10)x 1/12=1/12

Este problema ¢ um intermediario entre os das Figs. 1 e 2: entre uma roleta de mo-
vimento discreto, na qual a bola somente pode parar num nimero limitado de posi¢des de-
finidas, e uma roleta de movimento continuo, onde a bola pode parar em infinitas posicdes.
Um exemplo mais pratico pode ser encontrado em pesquisas sobre salarios de trabalhado-
res. Salarios s3o medidos em reais, cuja subdivisdo minima € o centavo; nao existem sala-
rios que usem meios centavos. A variavel saldrio, portanto, ¢ discreta. Num levantamento
dos salarios dos trabalhadores de uma cidade, poderiamos fazer uma lista de todos os sala-
rios possiveis, por exemplo

1.634,77 1.634,78 1.634,79 1.634,80 etc.

Isto porém seria trabalhoso, e provavelmente inttil. Economistas que fazem este
tipo de estudo devem estar mais interessados em conhecer a proporg¢io dos trabalhadores
que tém salarios entre R$ 1.500,00 e R$ 2.000,00, por exemplo, do que a proporcdo dos
que tém salarios de exatamente R$ 1.634,78. E mais pratico portanto tratar a variavel como
continua, e calcular as probabilidades de intervalos, € ndo as de valores pontuais. (Outros
exemplos serdo vistos na se¢do 3.4.4.5, onde o modelo normal de VAC sera usado como
aproximacao para os modelos binomial e de Poisson, que sdo de VAD)

(*) Num reldgio mecanico o ponteiro de segundos se move varias vezes por segundo (geralmente de 4 a 8
vezes, dependendo do modelo). Um reldgio de quartzo também poderia fazer isto, se fossem acrescentadas
engrenagens multiplicadoras no mecanismos. Isto ndo ¢ feito, porém, porque aumentaria o consumo de ener-
gia do relogio — ao invés de o mecanismo se mover uma vez por segundo, ele teria que se mover varias vezes.
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