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3.3.5. Modelo de distribuicdo binomial

3.3.5.1. Introdugdo
Exemplo 1: langamento de trés dados
Exemplo 2: langamento de quatro dados
3.3.5.2. Fungdo de probabilidades e pardmetros
Exemplo 1 (cont.) — Langamento de trés dados
Exemplo 2 (cont.) — Langamento de quatro dados
3.3.5.3. Simetria ou assimetria da distribui¢ao binomial
Exemplo 3 — Numero de meninas em familias de 12 criangas
3.3.5.4. Aproximagdes da distribui¢do binomial, para n grande

O modelo mais importante de VAD sera para nds o modelo binomial, que surge
quando um experimento de Bernoulli é repetido um nimero fixo de vezes, e contamos o

numero de sucessos obtidos.

3.3.5.1. Introducao

Para mostrar a origem destes modelo, retornaremos ao problema do langcamento de
trés dados.

Exemplo 1: langamento de trés dados

Um dado ¢ langado trés vezes (ou trés dados sdo lancados simultaneamente, o que
da no mesmo) e contamos o nimero X de vezes em que aparece a face 6. Para calcular as
probabilidades por meio de técnicas de enumeragdo, usamos um diagrama de arvore (se¢ao
3.1.6) e a partir dele calculamos a distribuicdo de probabilidades na Tab. 1.

Tabela 1. Distribui¢iio de probabilidades no lancamento
de trés dados (X: namero de dados que mostram a face 6)

X p(x)

0 0,5787
1 0,3472
2 0,0694
3 0,0046
3 1,0000

A partir da tabela, podemos calcular o valor esperado e a variancia da variavel X:
E(X) =0x0,5787 +1 x 0,3472 + 2 x 0,0694 + 3 x 0,0046 = 0,5
V(X) =(0-0,5)°x0,5787 + (1-0,5)*x0,3472 + (2-0,5)*x0,0694 + (3-0,5)*x0,0046
=0,4167

Tornaremos o problema um pouco mais complicado, aumentando o numero de dados.
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Exemplo 2: langamento de quatro dados

Langamos quatro dados simultaneamente e contamos o numero X de vezes em que
aparece a face 6. Usando a notagdo do modelo de Bernoulli, definimos:
sucesso: face 6
fracasso: qualquer outra face
p=P(sucesso)=1/6
q=P(fracasso)=1-p=5/6

A variavel de interesse sera X: numero de dados que mostram a face 6.
Calcular a probabilidade de todos os dados mostrarem a face 6 (isto é, X=4) ¢
relativamente facil:

P(X=4) = pxpxpxp = (1/6)* = 0,0008

A probabilidade de ndo ocorrer nenhum sucesso também ¢ facil de calcular:
P(X=0) = qxqxqxq = (5/6)* ~ 0,4823

Para calcular a probabilidade P(X=1) de obtermos exatamente 1 sucesso (nem mais,
nem menos) nas quatro tentativas, temos que listar as varias seqiiéncias de langamentos
que podem resultar em um sucesso e frés fracassos:

SFFF, FSFF, FFSF, FFFS

As probabilidades destes ramos sdo:
P(SFFF) = pqqq
P(FSFF) = qpqq
P(FFSF) = qqpq
P(FFFS) = qqqp

Note que todos estes ramos tém a mesma probabilidade, p'q’= (1/6)(5/6)° = 0,0965.
Como sdo quatro ramos,

P(X=1) = 4x(1/6)(5/6)’ = 0,3858

Para calcularmos a probabilidade P(X=2) de dois sucessos, enumeramos 0s ramos
que resultam em dois sucessos:
SSFF, SFSF, SFFS, FSSF, FSFS, FFSS

Todos estes ramos tém dois sucessos e dois fracassos, apenas em posi¢des diferentes (o
que ndo altera as probabilidades). A probabilidade de cada ramo sera portanto:

p’q" = (1/6)°(5/6)* = 25/1296 ~ 0,0193

Como sao seis ramos de igual probabilidade,
P(X=2) = 6x(1/6)*(5/6)* ~ 6x0,0193 ~ 0,1157

A probabilidade P(X=3) pode ser calculada agora a partir das outras ja calculadas:
P(X=3) =1 - [P(X=0)+P(X=1)+P(X=2)+P(X=4)] ~ 0,0154

A distribuicdo de probabilidades resultante esta mostrada na Tabela 2.

NS}
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Tabela 2. Probabilidades no lancamento de
quatro dados (X: n°. de dados que mostram a face “6”)

X p(x)

0 0,4823
1 0,3858
2 0,1157
3 0,0154
4 0,0008
> 1,0000

Neste exemplo, podemos ver que cada seqiiéncia de sucessos e fracassos (cada

ramo da arvore) tem como probabilidade
(niimero de sucessos) q(nl’lmero de fracassos)

Se fizermos
n: numero de tentativas
o numero de sucessos,
n — x: namero de fracassos

podemos escrever que cada seqiiéncia tera probabilidade igual a p*¢™ ™. O problema agora
¢ calcular quantas destas seqiiéncias existem, para cada valor de x. Para isto, usamos anali-
se combinatoria: em cada ramo ha n posigdes (no exemplos acima, n dados); se destas n
posicdes quero escolher x para os sucessos € n — x para os fracassos, quantas possibilida-
des tenho para esta escolha? O numero de possibilidades serd o niimero de combinagdes
das n posigdes x a x, dado por:

% n!

" xl(n—x)!

onde n! (fatorial de n) ¢ dado por:
nl=nx(n—-1)x(n-2)x..x2xl

Por exemplo, se sao n=4 dados, o nlimero de maneiras em que podem ser obtidos x=2
sucessos sera:
y . B 4!

Cn = = =6
xl(n—x)! 21(4-2)!

7 . % eqe
Para cada niimero x de sucessos existem C, ramos, e a probabilidade de cada

ramo é dada por p"¢™; o modelo para calculo das probabilidades sera portanto obtido
pela multiplicag@o da probabilidade de cada ramo pelo niimero de ramos:

P(X=x)= C,f.px.q("_x)

3.3.5.2. Funcio de probabilidades e parametros

O modelo binomial tem portanto sua funcdo de probabilidades dada pela expressao:

P(X=x)=C;p"q"™
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cujos parametros sao:
n numero de repetigdes
p probabilidade de sucesso em cada repeticdo

Note que o valor g que aparece na féormula ndo ¢ considerado um dos parametros, porque
ele ¢ dado simplesmente por g=/ — p. Alguns livros, para manter a notacdo mais coerente,
preferem escrever o modelo como:

P(X=x)=C,p*(1-p)"™

Este modelo ¢ representado abreviadamente por B(n,p); a letra B de “binomial” e os
dois parametros n e p. (O modelo ¢ chamado de “binomial”, porque sua férmula ¢ a do bi-
némio de Newton, usado na Algebra para calcular poténcias da soma de dois termos). Para
dizer que uma variavel X segue o modelo binomial B(n,p), usamos a notagao:

X~ B(np)

Pode ser demonstrado (mas isto ndo sera feito aqui) que o valor esperado e a vari-
ancia de uma varidvel que segue este modelo podem ser calculados em fun¢ao dos pardme-

tros, da forma:
EX) =np  V(X) =npq

O modelo binomial pode ser usado em problemas que tém em comum estas carac-
teristicas:

(1) Compdem-se de um numero fixo n de repeti¢des de um experimento de Bernoulli.
Cada repeticao é chamada de uma fentativa;

(11) Cada tentativa pode resultar em dois resultados. O resultado que nos interessa con-
tar ¢ geralmente chamado de sucesso, o outro de fracasso (no problema acima, ob-
temos um sucesso quando o dado mostra a face 6, e fracasso quando mostra qual-
quer outra face);

(i)  As tentativas sdo probabilisticamente independentes. Isto quer dizer que o resulta-
do de uma tentativa ndo afeta as probabilidades da tentativa seguinte, e que as pro-
babilidades de sucesso e de fracasso serdo constantes em todas as tentativas. Repre-
sentamos a probabilidade de sucesso em cada tentativa por p e a probabilidade de
fracasso por ¢;

(iv) A variavel de interesse ¢ X, o numero de sucessos obtidos dentro das n tentativas.

Exemplo 1 (cont.) — Langamento de trés dados

Voltando ao Exemplo 1, do lancamento de trés dados, e usando as formulas acima:

n=3
X: nimero de dados que mostram a face “6”
Sucesso: face “6” —  p=P(S)=1/6

Fracasso: qualquer outra face —  ¢g=P(F)=1-p=5/6
E(X)=np=0,5 V(X)=npg=3x1/6 x 5/6 =0,4167
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Exemplo 2 (cont.) — Langamento de quatro dados

Voltando ao Exemplo 2 acima, do langamento de quatro dados:
n=4, p=1/6
E(X)=np=4x1/6 0,67
V(X)=npg=4x 1/6 x 5/6 = 0,56

3.3.5.3. Simetria ou assimetria da distribuicao binomial

A simetria ou assimetria da distribui¢do binomial ¢ controlada pelo parametro p, a
probabilidade de sucesso em cada tentativa. Se p=0,5, como num problema de cara ou co-
roa, a distribuicdo é simétrica. Se sdo feitas n=10 tentativas, o valor de X com maior pro-
babilidade serd X=5, e as probabilidades decrescem simetricamente a medida que o valor
de X se afasta de 5:

P(X=4) = P(X=6)
P(X=3) = P(X=7), etc.
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Figura 1. Distribuicées binomiais para n=10, diferentes valores de p
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Esta simetria ¢ devida a uma propriedade das combinagdes, mencionada na secdo 3.1.4.4:
£

Portanto,
C140 = C160
C13() = C17() , etc.

A Fig. 1 mostra distribui¢des binomiais para n=10, e nove valores diferentes de p.
Se p <0,5, a distribuicdo sera assimétrica positiva, como nos graficos da primeira linha da
figura; se p > 0,5, sera assimétrica negativa, como nos graficos da terceira linha. Note que
a distribui¢do com p=0,1 ¢ a imagem refletida num espelho da distribui¢do com p=0,9; a
distribuicdo com p=0,2 é a imagem refletida da distribui¢cdo com p=0,8, etc.

Exemplo 3 — Numero de meninas em familias de 12 criangas

A Tabela 3, bastante conhecida na literatura de Estatistica, mostra os resultados de
um levantamento feito entre 6115 familias que tinham 12 criancas, na Saxdnia (um dos
estados da Alemanha). O nimero X de meninas em cada familia foi anotado, e a distribui-
cdo de frequéncias desta varidvel estd nas colunas 2 e 3 da tabela (freqiiéncias observadas e
relativas). As colunas 4 e 5 mostram a distribui¢do de probabilidades de X dada por um
modelo binomial B(n=12, p=0,5), € o nimero esperado de familias em cada linha, calcula-
do a partir destas probabilidades.

Tabela 3. Numero de meninas em familias de 12 criancas na Saxonia (Geissler, 1889)

valores observados valores calculados,
supondo p = 0,5
X: niimero freqiiéncia freqiiéncia | probabilidade freqiiéncia
de meninas absoluta relativa esperada
0 7 0.0011 0.0002 1
1 45 0.0074 0.0029 18
2 181 0.0296 0.0161 99
3 478 0.0782 0.0537 328
4 829 0.1356 0.1208 739
5 1112 0.1818 0.1934 1183
6 1343 0.2196 0.2256 1379
7 1033 0.1689 0.1934 1183
8 670 0.1096 0.1208 739
9 286 0.0468 0.0537 328
10 104 0.0170 0.0161 99
11 24 0.0039 0.0029 18
12 3 0.0005 0.0002 1
6115 1 1 6115

Na tabela, podemos ver que as frequéncias de X previstas pelo modelo binomial sdo
bastante proximas das observadas na amostra, mas hé algumas discrepancias. O grafico da
Fig. 2, mostra que a distribuicdo da variavel ndo € totalmente simétrica (como deveria ser
se p=0,5); existem mais familias com 5 meninas do que com 7, mais familias com 4 meni-
nas do que com 8, etc. Ha mais meninas do lado esquerdo do grafico do que seria esperado
se as probabilidades de nascimento fossem iguais, e menos meninas do lado direito; isto
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indica que a média desta distribuicdo sera menor do que a média tedrica dada pelo modelo.
De fato, a média de X observada foi de 5,77, menor do que o valor esperado do modelo,
que ¢

EX)=np=12x0,5=6

Nasciam, portanto, menos meninas do que meninos. Esta diferenca na verdade ja
era esperada, pois ¢ um fato, bem conhecido dos demografos, que nascem mais meninos do
que meninas, em quase todos os paises do mundo. A razio entre o nimero de nascimentos
de meninos em rela¢do ao de meninas ¢ geralmente medida pela razdo de sexo (sex ratio),
que ¢ o numero de meninos nascidos para cada 100 meninas, num intervalo de tempo; a
média mundial ¢ de cerca de 105/100. (Veremos este assunto novamente na Secao 4.4)

freq
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Figura 2. Distribui¢cdo do nimero de meninas em familias
com 12 criancas (Saxonia, 1889)

3.3.5.4. Aproximacoes da distribuicao binomial, para n grande

A distribuigdo binomial ¢ freqiientemente usada em problemas onde as amostras
sdo muito grande. Por exemplo, numa pesquisa para estimar a intengdo de votos de elei-
tores, antes de uma eleicdo onde haja apenas dois candidatos; ou numa pesquisa para ava-
liar a porcentagem de criangas de uma regido que tomaram uma certa vacina. Em ambos
exemplos, as amostras serdo muito grandes, da ordem de milhares de elementos. Isto traz
problemas para os célculos, porque a funcdo de probabilidades

P(X =x)=C* p*q®™

utiliza combinagdes, e estas se baseiam em fatoriais:

% n!

e

x!(n—x)!
Os fatoriais porém ndo podem ser calculados para nimeros muito grandes. O fatorial de
69, por exemplo, ¢ o maior que pode ser obtido na maioria das calculadoras cientificas.
98
69! =1.71 x 10

(Para dar uma idéia da dimensdo deste nimero: os fisicos estimam que o numero de ato-
. 3 5 78 . 5
mos existentes no universo ¢ da ordem de apenas 10""...). Existem maneiras de calcular
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aproximadamente fatoriais de nimeros maiores, mas mesmo estes calculos tém limites. No
R, por exemplo, o maior fatorial que pode ser calculado por aproximacdo usando o pacote
estatistico basico “stats” ¢ :

170! =7.25 x 10°"

Veremos mais adiante dois modelos, o de Poisson (Secdo 3.3.6) e o normal ou

gaussiano (Sec¢do 3.4.4), que podem ser usados em algumas circunstancias como aproxi-
magao da binomial para amostras grandes.
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