projetoX.sigma

2.2.4. Medidas de correlacio

2.2.4.1. Covariancia

2.2.4.2. Coeficiente de correlagdo linear de Pearson
(1) O coeficiente ndo tem unidade
(i1) O coeficiente mede a forga da relagdo linear entre as variaveis
(ii1) O coeficiente ¢ muito sensivel a valores discrepantes

2.2.4.3. Correlagdo x causalidade

Se duas variaveis tém relacdo probabilistica linear entre si (observada no diagrama
de dispersdo), a forca desta relacdo pode ser medida pela covaridncia entre estas variaveis,
ou pelo seu coeficiente de correlagdo linear. Veremos abaixo como estas duas medidas sao
calculadas em dados de amostras.

2.2.4.1. Covariancia

A medida da covaridncia entre duas variaveis ¢ derivada da varidncia, que mede a
. ~ Sy, . ~ Sim . 2 .7 r
dispersdo de uma variavel. Vimos (se¢@o 2.2.2.4) que a variancia s~ de uma variavel X é
calculada pelo somatério do quadrado dos desvios de cada valor de X em relacdo a média:

i(xi _X)Z
g2 = il

n

A covariancia entre duas varidveis X e Y, normalmente representada por cov(X,Y), é calcu-
lada numa amostra pelo produto do desvio de uma variavel em relacido a sua média, pelo
desvio da outra, como na eq. (1).

zn:(xi - X)(yz - Y)
cov(X, Y)=-"= . (1)

Nao ¢ dificil entender intuitivamente o raciocinio por tras desta formula. Veja por
exemplo, a Fig. 1A, que mostra o diagrama de dispersdo altura x peso de uma amostra de
ciclistas profissionais (idéntica a Fig. 2 da sec¢do 2.1.7.1). A média do peso X destes ciclis-
tas ¢ X =71,7 kg; a média da altura ¢ Y= 175,3 cm. O ciclista representado pelo ponto no
canto superior direito tem altura X=188 cm e peso Y=80 kg. Ele esta acima da média, tanto
no peso quanto na altura; ambos os desvios sdo positivos, € seu produto serd também posi-
tivo. O ciclista representado pelo ponto no outro extremo do grafico, no canto inferior es-
querdo, tem altura X=165 cm e peso Y=61 kg; ele esta abaixo da média, tanto no peso
quanto na altura. Os dois desvios serdo portanto negativos, e seu produto sera positivo. Pa-
ra todos os pontos que estejam nos dois quadrantes destacados com fundo cinza no gréafico,
o produto dos desvios sera positivo; como eles s@o maioria, neste exemplo, o somatorio
devera ser positivo. Para os pontos que estdo nos dois quadrantes com fundo branco, po-
rém, um desvio sera positivo e o outro negativo; o produto sera portanto negativo. Se estes
pontos forem muito numerosos (como por exemplo na Fig. 3C), o somatdrio sera negativo,
indicando uma covariancia negativa.
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A covariancia mostra se a relag@o entre as duas varidveis € positiva ou negativa;
porém, apresenta os mesmos dois problemas ja encontrados na variancia. Primeiro, por ndo
ser uma medida relativa, ndo nos permite avaliar se a for¢a da relacdo entre as duas varia-
veis € grande, ou ndo. Por exemplo, para os ciclistas, a covariancia calculada foi:

cov(altura,peso) = 21,9 cm.kg

Isto ¢ muito ou pouco? Nao podemos dizer, se ndo ha um padrao de comparacdo. A co-
variancia entre alturas e pesos nos dados de estudantes de Medicina (Fig. 1B) ¢ igual a
cov(altura,peso) = 82,6 cm.kg

No entanto, € claro no grafico que a relagdo deve ser mais forte entre os ciclistas do que
entre os estudantes. A razdo disto ¢ facil de entender: os ciclistas t€ém todos um bidtipo
especifico, caracteristico daquele esporte; aqueles que ndo tém a relagido desejada entre
altura e peso provavelmente ndo conseguirdo sucesso como profissionais. Os estudantes,
por outro lado, ndo tém que atender a nenhuma exigéncia quanto a isto.

O segundo problema com a medida de covariancia é que ela tem uma unidade, dada
pelo produto das unidades das duas varidveis (no caso, kg x cm); ndo podemos por isso
comparar o valor da covariancia entre um par de varidveis com a de outro par, se as unida-
des forem diferentes. A covariancia é por isso muito usada na teoria (na demonstragao de
teoremas, etc.), mas ndo muito na pratica. Na secdo seguinte veremos uma medida que
evita estes dois problemas.
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Figura 1. Diagramas de dispersio alfura x peso

Por fim, ¢ importante ter sempre em mente que a covariancia mede a relag@o proba-
bilistica /inear entre duas variaveis; ndo serve se a relacdo for ndo-linear. Por exemplo,
considere os trés diagramas da Fig. 2, feitos a partir de dados simulados. E bem evidente
que as duas varidveis da Fig. 2A tém uma relag@o probabilistica ndo-linear muito forte,
quase deterministica; as da Fig. 2B ainda também tém uma relag@o, porém bem mais fraca;
as da Fig. 2C ndo tém relagdo nenhuma. As covariancias, no entanto, sdo praticamente nu-

las (0,00; -0,02 e 0,01, respectivamente), indicando que nio ha relagdo /inear em nenhum
dos trés diagramas.
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Figura 2. Trés distribui¢des simuladas, com diferentes graus de relag¢io nio-linear

2.2.4.2. Coeficiente de correlacao linear de Pearson

O coeficiente de correlagdo linear de Pearson ¢ uma medida da forca da relacdo
probabilistica linear entre duas variaveis. Francis Galton atribuiu a esta relagdo o nome de
correlagdo, e propos um indice para medi-la; este indice foi depois aperfeicoado por Karl
Pearson, donde o nome do coeficiente.

Em geral o valor deste coeficiente, calculado nos dados de uma amostra, ¢é repre-
sentado pela letra 7 ; o valor tedrico para uma populacdo é representado pela letra grega p
(r6). Sua idéia basica ¢ a mesma da covariancia: usar o somatorio dos produtos dos desvios
de cada ponto em relag@o as médias das varidveis. No entanto, para estabelecer limites aos
valores da medida, e para torna-la adimensional, a covariancia ¢ dividida pelo produtos dos
desvios-padrdes sy e sy das duas variaveis, como na eq. (2).

cov(X,Y)
rE— @
SxSy

Demonstra-se que este coeficiente pode assumir valores no intervalo [-1,1]. Um
valor de » = £1 indica que as duas variaveis tém perfeita correlagdo linear, positiva ou ne-
gativa (o que ¢ o mesmo que dizer que a relacdo entre elas é deterministica); um valor de
r =0 indica que ndo hé correlagido alguma entre as variaveis.
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Figura 3. Trés distribui¢coes simuladas, com correlacio linear
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A Fig. 3 mostra trés diagramas de dispersdo com dados simulados (idénticos aos da
Fig. 4 da se¢do 2.1.7). Nos diagramas (A) e (C), as variaveis tém correlagdo muito forte,
positiva e negativa, com coeficientes » = 0,96 e r = - 0,92, respectivamente. No diagrama
(B), a correlacdo positiva ainda € bastante evidente, mas menor, com » = 0,71 (na pratica,
correlagdes com [r| > 0,7 ainda s@o consideradas fortes, e sdo raramente encontradas).

Ha trés caracteristicas importantes do coeficiente de Pearson que devem ser nota-
das: (i) o coeficiente ¢ adimensional (ndo tem unidade); (ii) o coeficiente s6 mede a forga
de relagdes lineares; (iii) o coeficiente ¢ muito sensivel a valores discrepantes (outliers).

(i) O coeficiente ndo tem unidade

Este coeficiente ¢ adimensional, e seu valor ndo depende das unidades das varia-
veis; podemos por isso uséa-lo para comparar as correlagdes de pares de varidveis que tém
unidades diferentes. Por exemplo, a Fig. 4A mostra o diagrama de dispersao que relaciona
as idades de maridos e mulheres, numa amostra de casais ingleses; a Fig. 4B, o que relacio-
na as alturas nos mesmos casais. E bem evidente nos diagramas que existe uma relagéo
linear positiva muito forte entre as idades, mas ndo tanto entre as alturas. Nao podemos
comparar a forca destas relagdes usando a covaridncia, porque as unidades sdo diferentes;
podemos contudo comparar usando o coeficiente de correlagdo. Isto confirma o que obser-
vamos nos diagramas: para as idades, o valor calculado do coeficiente ¢ de » = 0.94, o que
¢ uma correlacdo muito forte; para as alturas, apenas » = 0.36.
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Figura 4. Diagramas de dispersao das idades e alturas, em casais ingleses

(ii) O coeficiente mede a for¢a da relagdo linear entre as varidaveis

O coeficiente de Pearson ndo pode ser usado para avaliar relagdes ndo-lineares en-
tre variaveis; ndo serve, por exemplo, para as varidveis nos diagramas da Fig. 2A e B, que
tém relagdes claramente ndo-lineares (» = 0, nos dois graficos).

Na pratica, quando em Estatistica falamos em “correlac@o”, geralmente estamos nos
referindo a relacdes lineares. No R, por exemplo, o comando que calcula a correlacdo line-
ar entre duas varidveis X e Y é cor (X, Y) ; ndo € preciso especificar que a correlagdo seja
linear. O estudo e a modelagem de relacdes ndo-lineares geralmente esta além do escopo
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da Estatistica basica, e ndo existe uma medida geralmente aceita para medir a forca destas
relagdes.

(iii) O coeficiente é muito sensivel a valores discrepantes

O coeficiente de Pearson ¢ muito sensivel, como também sdo a covariancia e vari-
ancia. Os graficos da Fig. 5 mostram um exemplo extremo. Na amostra da Fig. SA, a cor-
relacdo entre X e Y ¢ obviamente nula. Na amostra da Fig. SB, introduzimos um ponto
discrepante no canto superior direito do diagrama; como os desvios deste ponto em relacio
as média serdo muito grandes, o somatdrio dos desvios ¢ aumentado, e o coeficiente agora
para a ser » = 0,91, o que indicaria uma correlagdo muito forte (que na verdade ndo existe,
pois foi causada por apenas um ponto). Devido a esta sensibilidade, o coeficiente de Pear-
son deve ser usado com cuidado, especialmente se as amostras forem pequenas, porque um
unico valor discrepante pode vir a afetar o valor de r e sugerir uma correlagao forte, que na
verdade ndo existe.

T T T T T T T T T T
A. Sem pontos discrepantes B. Com um ponto discrepante

Figura 5. Efeito dos pontos discrepantes na correlagio

2.2.4.3. Correlacio X causalidade

Por fim, ¢ importante lembrar de que uma correlagdo forte entre duas variaveis nao
implica causalidade. A correlagdo pode ser uma indicagio de que a variagdo em uma das
variaveis causa a variag@o na outra; porém, esta indicac@o, por si s, ndo ¢ convincente. E
preciso, além disso, verificar se existe alguma razdo logica que justifique a suposi¢@o de
que uma destas variaveis afeta a outra.

Correlacdo fortes entre variaveis que aparentemente ndo tém nenhuma relagio entre
si podem aparecer por varias razdes. A primeira ¢ simplesmente a quantidade de informa-
cdo disponivel hoje em dia na infernet e em outras fontes: ha tantos dados, que ¢ facil en-
contrar amostras de duas varidveis quaisquer que tém por acaso uma forte correlago, prin-
cipalmente se as amostras s@o pequenas. Exemplos disto podem ser vistos no site
http://tylervigen.com : o numero de doutorados em Engenharia esta correlacionado com o
consumo per capita de queijo mozarela em um pais (» = 0,96); o nimero de doutorados em
Sociologia nos EUA esta correlacionado com o nimero de langamentos mundiais de fo-
guetes espaciais ndo-comerciais (7 = 0,79); o numero de pessoas que se afogam ao cairem
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de um barco de pesca esta correlacionado com a taxa de casamentos no estado de Ken-
tucky (r = 0,95), etc. Correlacdes deste tipo sdo chamadas de “espurias”.

Outro razdo para o surgimentos destas correlacdes ¢, simplesmente, a fraude. Se
alguém quer provar alguma teoria de maneira fraudulenta, pode simplesmente inventar
dados (o que acontece com mais freqiiéncia do que se imagina); ou entdo, escolher dentro
de um conjunto de dados aqueles que mais favorecem sua teoria, e descartar os outros. Por
exemplo, suponha que tenhamos os dados mostrados na Fig. 6A, que sdo amostras simu-
ladas de duas populagdes independentes. Se quero usar estes dados para provar que existe
uma correlacdo positiva entre as duas variaveis, posso simplesmente criar uma amostra
selecionando os pontos marcados na Fig. 6B, e esconder os outros; ou, se quero provar que
a correlag@o ¢ negativa, selecionar os da Fig. 6C. Isto é chamado em inglés de cherry pick-
ing (catar cerejas), e ¢ considerado uma forma grave de fraude cientifica.
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Figura 6. Selecionando pontos para criar correlagoes (cherry picking)

Uma terceira razdo para a existéncia de correlagdo fortes entre duas variaveis que
ndo tém na verdade nenhuma relagdo logica entre si s@o as varidveis de confundimento: se
duas variaveis X e Y estdo associadas — quando X cresce, Y cresce também -, pode haver
uma terceira variavel W, oculta, que faz com que X e Y se movam na mesma dire¢@o. Por
exemplo, existe uma correlagdo entre a porcentagem da populag@o que tem computadores
num pais, e a porcentagem de pessoas que morrem de cancer. Isto ndo quer dizer que com-
putadores causam cancer; no caso, a correlacdo ¢ causada por uma terceira variavel, o grau
de desenvolvimento de um pais. Quanto mais desenvolvido o pais, maior o nimero de com-
putadores e maior a expectativa de vida; a maior expectativa de vida, por sua vez, aumenta
a porcentagem de pessoas com cancer (que € tipicamente uma doenga de pessoas idosas).

Cada caso de correlagdo deve ser analisado por especialistas da area, que devem
verificar se a suposta relacdo de causa e efeito entre as variaveis faz sentido - se podemos
dizer que X realmente causa Y, ou se X e Y sdo ambos conseqiiéncias de uma terceira va-
ridvel W. As variaveis de confundimento sdo um problema, por exemplo, na pesquisa em
Medicina, quando se deseja descobrir a causa da doenga de Alzheimer. H4 uma quantida-
de enorme de variaveis cuja relagdo com a incidéncia da doenga deve ser investigada; algu-
mas delas mostrardo correlagdo positiva, e sera entdo preciso decidir se existe causalidade
nesta relagdo.

Resumo

- Se duas variaveis tém uma relaga@o probabilistica linear entre si, dizemos que elas t€m correlagdo linear;

- A forca da relagdo probabilistica entre duas variaveis X e Y pode ser medida pela covaridncia entre estas
varidveis (representada por cov(X,Y)), ou pelo seu coeficiente de correlagdo linear (representado por 7);
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- A covaridncia ¢ importante nas aplica¢des tedricas, mas ndo ¢ muito usada nas aplica¢des praticas;

- O coeficiente de correlacdo linear de Pearson varia no intervalo [-1,1]. Os valores extremos deste inter-
valo, =1 e » = -1, indicam que existe uma relacdo deterministica entre as variaveis;

- Este coeficiente é adimensional e pode ser usado para medir a correlagdo entre qualquer par de variaveis,
independentemente de suas unidades ou de sua médias

- Uma correlagdo nula (» = 0) ndo significa que ndo haja relagdo entre as variaveis; pode haver uma relagdo
nao-linear entre elas;

- A existéncia de correlagdo entre duas variaveis ndo implica em causalidade! Se duas variaveis estdo cor-
relacionadas, isto nem sempre quer dizer que uma delas causa a outra.
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